cf175

/*

cf175A 水题 

*/
#include<iostream>
#include<cstdio>
using namespace std;

int main(){
    int n,k;
    while(cin>>n>>k){
        int flag=0;
        for(int i=1;i<=k;i++){
            flag=1;
            if(i==1) cout<<n-i+1;
            else cout<<" "<<n-i+1;
        }    
        for(int i=1;i<=n-k;i++){
            if(!flag) { cout<<i; flag=1; continue; }
            cout<<" "<<i;
        }    
        cout<<endl;
    }
} 
/*

cf175C 贪心 

*/ 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
//#define abs(x-y) x>y?x-y:y-x
using namespace std;
#define manx 300001
#define int64 __int64
bool s[manx];
int64 p[manx],a[manx];

int main(){
    int n;
    while(cin>>n){
        for(int i=1;i<=n;i++) s[i]=0;
        for(int i=1;i<=n;i++){
            scanf("%I64d",&a[i]);
            if(a[i]>0 && a[i]<=n) s[a[i]]=1;
        }
        sort(a+1,a+n+1);
        int64 sum=0;
        for(int i=1,j=1;i<=n&&j<=n;){
            if(a[i]>0 && a[i]<=n){ 
                if(i>1 && a[i]>a[i-1]){
                    i++; continue; 
                }    
            } 
            if(s[j]) { j++; continue; }
            sum += abs(a[i]-j);
            i++; j++;
        }
        cout<<sum<<endl;
    }
} 


### 关于 Codeforces Problem CF175B 的解决方案 #### 问题描述 Codeforces Problem CF175B 是一个涉及路径规划和字符串操作的问题。题目要求设计一个机器人程序,使其能够按照给定的指令完成特定的任务。 虽然当前未提供具体题目的详细说明,但从常见的机器人路径问题来看,通常会涉及到以下几个方面: - **输入解析**:读取机器人的初始位置以及目标位置。 - **路径计算**:通过分析可能的方向变化来构建最短路径。 - **输出生成**:将路径转换为一系列字符表示的动作序列。 以下是基于常见机器人路径问题的一个通用解决框架[^3]: --- #### 解决方案概述 为了实现该问题的目标,可以采用如下策略: 1. 定义方向向量 `dx` 和 `dy` 来表示上下左右四个移动方向。 2. 使用广度优先搜索(BFS)算法找到从起点到终点的最短路径。 3. 将 BFS 路径转化为对应的命令字符串形式。 下面是具体的代码实现示例: ```cpp #include <bits/stdc++.h> using namespace std; const int MAX_N = 100; char grid[MAX_N][MAX_N]; bool visited[MAX_N][MAX_N]; // 方向定义 struct Direction { int dx, dy; char command; }; Direction directions[] = {{0, 1, 'R'}, {0, -1, 'L'}, {1, 0, 'D'}, {-1, 0, 'U'}}; int num_directions = sizeof(directions) / sizeof(directions[0]); void bfs(int startX, int startY, int endX, int endY, vector<char>& path) { queue<pair<int, pair<int, string>>> q; // (current_x, current_y), commands_so_far q.push({startX, {startY, ""}}); visited[startX][startY] = true; while (!q.empty()) { auto front = q.front(); q.pop(); int cx = front.first; int cy = front.second.first; string cmd = front.second.second; if (cx == endX && cy == endY) { for (auto c : cmd) path.push_back(c); return; } for (int i = 0; i < num_directions; ++i) { int nx = cx + directions[i].dx; int ny = cy + directions[i].dy; if (nx >= 0 && nx < MAX_N && ny >= 0 && ny < MAX_N && !visited[nx][ny] && grid[nx][ny] != '#') { visited[nx][ny] = true; q.push({nx, {ny, cmd + directions[i].command}}); } } } } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, m; cin >> n >> m; pair<int, int> start, finish; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { cin >> grid[i][j]; if (grid[i][j] == 'S') start = {i, j}; if (grid[i][j] == 'E') finish = {i, j}; } } memset(visited, false, sizeof(visited)); vector<char> resultPath; bfs(start.first, start.second, finish.first, finish.second, resultPath); cout << resultPath.size() << "\n"; for (auto c : resultPath) cout << c; cout << "\n"; return 0; } ``` 上述代码实现了以下功能: - 利用 BFS 寻找从起点到终点的最短路径。 - 输出路径长度及其对应的操作序列。 --- #### 复杂度分析 - 时间复杂度:O(N * M),其中 N 表示网格的高度,M 表示宽度。这是由于 BFS 需要遍历整个地图一次。 - 空间复杂度:O(N * M),用于存储访问状态矩阵和队列中的节点信息。 --- #### 注意事项 如果实际问题中有额外约束条件,则需调整 BFS 或增加剪枝逻辑以优化性能。例如,在某些情况下,可以通过启发式函数改进搜索效率(A* 算法)。此外,还需注意边界情况处理,比如无法到达目的地的情形应返回特殊标志或错误提示[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值