R-多分类logistic回归(机器学习)

本文介绍了如何使用R中的DALEX包处理多分类问题,通过随机森林模型分析HR数据,探讨了变量重要性、边际效应以及个体预测,展示了如何解释复杂模型的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多分类logistic回归

在之前文章介绍了,如何在R里面处理多分类的回归模型,得到的是各个因素的系数及相对OR,但是解释性,比二元logistic回归方程要冗杂的多。

那么今天继续前面的基础上,用机器学习的方法来解释多分类问题。
其实最终回归到这类分类问题的本质:有了一系列的影响因素x,那么根据这些影响因素来判断最终y属于哪一类别。

image.png

1.数据案例

这里主要用到DALEX包里面包含的HR数据,里面记录了职工在工作岗位的状态与年龄,性别,工作时长,评价及薪水有关。根据7847条记录来评估,如果一个职工属于男性,68岁,薪水及评价处于3等级,那么该职工可能会处于什么状态。

library(DALEX)
library(iBreakDown)
library(car)
library(questionr)
try(data(package="DALEX"))
data(HR)

# split
set.seed(543)
ind = sample(2,nrow(HR),replace=TRUE,
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值