【PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】】
https://www.bilibili.com/video/BV1hE411t7RN?p=18&vd_source=0f9b599f83ed1428365ed2868460a265
import torch.optim
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
import torch.nn as nn
#加载数据集
#训练数据集
dataset1 = datasets.CIFAR10("tourchvision_tranforms_dataset",train=True,transform=transforms.ToTensor(),download=True)
dataloader1 = DataLoader(dataset1,64,shuffle=True)
#测试数据集
test_dataset = datasets.CIFAR10("tourchvision_tranforms_dataset",train=False,transform=transforms.ToTensor(),download=True)
dataloader2 = DataLoader(test_dataset,64,shuffle=True)
#定义网络模型
class model1(nn.Module):
def __init__(self):
super(model1, self).__init__()
self.seq1 = nn.Sequential(
nn.Conv2d(3,32,5,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024,64),
nn.Linear(64,10)
)
def forward(self,data):
out_data = self.seq1(data)
return out_data
this_model = model1()
#训练轮数
epoch = 6
#定义优化器-随机梯度下降
this_optim1 = torch.optim.SGD(this_model.parameters(),lr=0.03)
#损失函数
this_loss1 = nn.CrossEntropyLoss()
writer1 = SummaryWriter("logs_2")
all_loss = 0
#训练
for i in range(epoch):
all_loss = 0
print("------第{}轮训练------".format(i+1))
for loader1 in dataloader1:
imgs,lables = loader1
#将优化器参数清零
this_optim1.zero_grad()
out_val = this_model(imgs)
#计算顺损失函数值
loss_val = this_loss1(out_val,lables)
#反向传播函数
loss_val.backward()
this_optim1.step()
all_loss = all_loss + loss_val
print("第{}轮训练结束. all_loss={}".format((i+1),all_loss))
writer1.add_scalar("train_all_loss",all_loss,i+1)
#用测试数据集测试模型正确率
#测试集不使用梯度下降
test_all_loss = 0
all_righ = 0
with torch.no_grad():
for loader in dataloader2:
imgs,lables = loader
print(lables)
out = this_model(imgs)
print(out)
print("--------")
test_loss = this_loss1(out,lables)
#测试数据集损失函数值
test_all_loss = test_all_loss + test_loss
#测试数据集正确率
right = (out.argmax(1) == lables).sum()
all_righ = all_righ + right
writer1.add_scalar("test_loss",test_all_loss,(i+1))
print("测试集正确率:{}".format(all_righ / len(test_dataset)))
writer1.add_scalar("right_rate", all_righ / len(test_dataset),(i+1))
#保存已经训练好的网络模型
torch.save(this_model,"final_modle.pth")
writer1.close()