BetaFlight模块设计之三十六:SoftSerial

本文详细解析了BetaFlight中的SoftSerial模块,包括API接口及其功能,如openSoftSerial的配置过程,以及如何通过定时器和中断实现电平协议解析。文章指出软串口在高速数据通信中的潜在问题,强调了在资源紧张环境下的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 源由

鉴于Betaflight关于STM32F405 SBUS协议兼容硬件电气特性问题,从程序代码上看,软串口应该能够采用定时器、中断的方式进行电平协议的解析。

但是从实测Betaflight4.4.2固件的角度看,又无法使用,怀疑可能存在以下问题:

  1. 配置问题
  2. 代码移植BUG(unified_target ==> config)
  3. 代码不支持

所以尝试整理下SoftSerial代码结构,通过对整体代码的了解,能否找出其中的一些深层次原因。

2. API接口

从对外接口的角度看,主要有以下API:

  • 打开软件串口openSoftSerial
  • 底层串行信号电平变更处理onSerialRxPinChange
  • 底层串行信号超市处理onSerialTimerOverflow
  • 后端Tx状态处理processTxState
  • 后端Rx状态处理processRxState
serialPort_t *openSoftSerial(softSerialPortIndex_e portIndex, serialReceiveCallbackPtr rxCallback, void *rxCallbackData, uint32_t baud, portMode_e mode, portOptions_e options)
void onSerialRxPinChange(timerCCHandlerRec_t *cbRec, captureCompare_t capture)
void onSerialTimerOverflow(timerOvrHandlerRec_t *cbRec, captureCompare_t capture)
void processTxState(softSerial_t *softSerial)
void processRxState(softSerial_t *softSerial)

2.1 openSoftSerial

根据资源进行配置:

  • 【Hardware】GPIO:Tx/Rx/SERIAL_INVERTED
  • 【Hardware】TIMER
  • 【Hardware】Interrupt:ICPOLARITY_RISING/ICPOLARITY_FALLING
  • 【Software】Buffer
  • 【Software】Callback:onSerialRxPinChange(edgeCb)/onSerialTimerOverflow(overCb)/rxCallback
openSoftSerial
 │
 │   // get serial port description
 ├──> softSerial_t *softSerial = &(softSerialPorts[portIndex]);
 │
 │   // get serial port rx/tx ioTag
 ├──> ioTag_t tagRx = softSerialPinConfig()->ioTagRx[portIndex];
 ├──> ioTag_t tagTx = softSerialPinConfig()->ioTagTx[portIndex];
 │
 │   // one wire(Sbus etc.) or two wire softserial(UART etc.)
 ├──> const timerHardware_t *timerTx = timerAllocate(tagTx, OWNER_SOFTSERIAL_TX, RESOURCE_INDEX(portIndex));
 ├──> const timerHardware_t *timerRx = (tagTx == tagRx) ? timerTx : timerAllocate(tagRx, OWNER_SOFTSERIAL_RX, RESOURCE_INDEX(portIndex));
 │
 │   // get serial port rx/tx IO_t
 ├──> IO_t rxIO = IOGetByTag(tagRx);
 ├──> IO_t txIO = IOGetByTag(tagTx);
 │
 │   // timer & io set
 ├──> <options & SERIAL_BIDIR> // bi-direction configuration
 │   ├──> <!timerTx || (timerTx->output & TIMER_OUTPUT_N_CHANNEL)>
 │   │   │   // If RX and TX pins are both assigned, we CAN use either with a timer.
 │   │   │   // However, for consistency with hardware UARTs, we only use TX pin,
 │   │   │   // and this pin must have a timer, and it should not be N-Channel.
 │   │   └──> return NULL;
 │   ├──> softSerial->timerHardware = timerTx;
 │   ├──> softSerial->txIO = txIO;
 │   ├──> softSerial->rxIO = txIO;
 │   └──> IOInit(txIO, OWNER_SOFTSERIAL_TX, RESOURCE_INDEX(portIndex));
 ├──> < else > // unidirection configuration
 │   ├──> <mode & MODE_RX>
 │   │   ├──> <!timerRx || (timerRx->output & TIMER_OUTPUT_N_CHANNEL)>
 │   │   │   │   // Need a pin & a timer on RX. Channel should not be N-Channel.
 │   │   │   └──> return NULL;
 │   │   ├──> softSerial->rxIO = rxIO;
 │   │   ├──> softSerial->timerHardware = timerRx;
 │   │   └──> <!((mode & MODE_TX) && rxIO == txIO)>
 │   │       └──> IOInit(rxIO, OWNER_SOFTSERIAL_RX, RESOURCE_INDEX(portIndex));
 │   └──> <mode & MODE_TX>
 │       ├──> <!tagTx>
 │       │   │   // Need a pin on TX
 │       │   └──> return NULL;
 │       ├──> softSerial->txIO = txIO;
 │       ├──> <!(mode & MODE_RX)>
 │       │   ├──> <!timerTx> return NULL;
 │       │   │   // TX Simplex, must have a timer
 │       │   └──> softSerial->timerHardware = timerTx;
 │       ├──> < else >  // Duplex
 │       │   └──> softSerial->exTimerHardware = timerTx;
 │       └──> IOInit(txIO, OWNER_SOFTSERIAL_TX, RESOURCE_INDEX(portIndex));
 │
 │   // port configuration
 ├──> softSerial->port.vTable = &softSerialVTable;
 ├──> softSerial->port.baudRate = baud;
 ├──> softSerial->port.mode = mode;
 ├──> softSerial->port.options = options;
 ├──> softSerial->port.rxCallback = rxCallback;
 ├──> softSerial->port.rxCallbackData = rxCallbackData;
 │
 ├──> resetBuffers(softSerial);
 │
 ├──> softSerial->softSerialPortIndex = portIndex;
 │
 ├──> softSerial->transmissionErrors = 0;
 ├──> softSerial->receiveErrors = 0;
 │
 ├──> softSerial->rxActive = false;
 ├──> softSerial->isTransmittingData = false;
 │
 │   // Configure master timer (on RX); time base and input capture
 ├──> serialTimerConfigureTimebase(softSerial->timerHardware, baud);
 ├──> timerChConfigIC(softSerial->timerHardware, (options & SERIAL_INVERTED) ? ICPOLARITY_RISING : ICPOLARITY_FALLING, 0);
 │
 │   // Initialize callbacks
 ├──> timerChCCHandlerInit(&softSerial->edgeCb, onSerialRxPinChange);
 ├──> timerChOvrHandlerInit(&softSerial->overCb, onSerialTimerOverflow);
 │
 │   // Configure bit clock interrupt & handler.
 │   // If we have an extra timer (on TX), it is initialized and configured
 │   // for overflow interrupt.
 │   // Receiver input capture is configured when input is activated.
 ├──> <(mode & MODE_TX) && softSerial->exTimerHardware && softSerial->exTimerHardware->tim != softSerial->timerHardware->tim>
 │   ├──> softSerial->timerMode = TIMER_MODE_DUAL;
 │   ├──> serialTimerConfigureTimebase(softSerial->exTimerHardware, baud);
 │   ├──> timerChConfigCallbacks(softSerial->exTimerHardware, NULL, &softSerial->overCb);
 │   └──> timerChConfigCallbacks(softSerial->timerHardware, &softSerial->edgeCb, NULL);
 ├──> < else >
 │   ├──> softSerial->timerMode = TIMER_MODE_SINGLE;
 │   └──> timerChConfigCallbacks(softSerial->timerHardware, &softSerial->edgeCb, &softSerial->overCb);
 │
 ├──> <USE_HAL_DRIVER>
 │   └──> softSerial->timerHandle = timerFindTimerHandle(softSerial->timerHardware->tim);
 │
 │   // antivate port
 ├──> <!(options & SERIAL_BIDIR)>
 │   ├──> serialOutputPortActivate(softSerial);
 │   └──> setTxSignal(softSerial, ENABLE);
 ├──> serialInputPortActivate(softSerial);
 └──> return &softSerial->port;

2.2 onSerialRxPinChange

通过边沿中断记录bit数据流。

onSerialRxPinChange
 ├──> softSerial_t *self = container_of(cbRec, softSerial_t, edgeCb);
 ├──> bool inverted = self->port.options & SERIAL_INVERTED;
 │
 ├──> <(self->port.mode & MODE_RX) == 0>
 │   └──> return;  // 无接收模式,直接返回
 │
 ├──> <self->isSearchingForStartBit>
 │   │  // Synchronize the bit timing so that it will interrupt at the center
 │   │  // of the bit period.
 │   ├──> <USE_HAL_DRIVER>
 │   │   └──> __HAL_TIM_SetCounter(self->timerHandle, __HAL_TIM_GetAutoreload(self->timerHandle) / 2);
 │   ├──> <else>
 │   │   └──> TIM_SetCounter(self->timerHardware->tim, self->timerHardware->tim->ARR / 2);
 │   │
 │   │  // For a mono-timer full duplex configuration, this may clobber the
 │   │  // transmission because the next callback to the onSerialTimerOverflow
 │   │  // will happen too early causing transmission errors.
 │   │  // For a dual-timer configuration, there is no problem.
 │   ├──> <(self->timerMode != TIMER_MODE_DUAL) && self->isTransmittingData>
 │   │   └──> self->transmissionErrors++;
 │   │
 │   ├──> timerChConfigIC(self->timerHardware, inverted ? ICPOLARITY_FALLING : ICPOLARITY_RISING, 0);
 │   ├──> <defined(STM32F7) || defined(STM32H7) || defined(STM32G4)>
 │   │   └──> serialEnableCC(self);
 │   │
 │   ├──> self->rxEdge = LEADING;
 │   │
 │   ├──> self->rxBitIndex = 0;
 │   ├──> self->rxLastLeadingEdgeAtBitIndex = 0;
 │   ├──> self->internalRxBuffer = 0;
 │   ├──> self->isSearchingForStartBit = false;
 │   └──> return;
 │
 │   // handle leveled signal
 ├──> <self->rxEdge == LEADING>
 │   └──> self->rxLastLeadingEdgeAtBitIndex = self->rxBitIndex;
 ├──>  applyChangedBits(self);
 │
 ├──> <self->rxEdge == TRAILING>
 │   ├──> self->rxEdge = LEADING;
 │   └──> timerChConfigIC(self->timerHardware, inverted ? ICPOLARITY_FALLING : ICPOLARITY_RISING, 0);
 ├──> < else >
 │   ├──> self->rxEdge = TRAILING;
 │   └──> timerChConfigIC(self->timerHardware, inverted ? ICPOLARITY_RISING : ICPOLARITY_FALLING, 0);
 └──> <defined(STM32F7) || defined(STM32H7) || defined(STM32G4)>
     └──> serialEnableCC(self);

2.3 onSerialTimerOverflow

串行数据从原理上属于字符流协议,从实际应用角度,还是一包一包的数据(通常不会密集到头尾相连)。

因此,超时机制相当于处理:

  • 数据帧
  • 异常中断
onSerialTimerOverflow
 ├──> softSerial_t *self = container_of(cbRec, softSerial_t, overCb);
 ├──> <self->port.mode & MODE_TX> processTxState(self);
 └──> <self->port.mode & MODE_RX> processRxState(self);

2.4 processTxState

Tx数据处理存在三种情况:

  • 发送数据前处理
  • 发送数据
  • 发送数据后处理
processTxState
 │   // 发送数据前处理
 ├──> <!softSerial->isTransmittingData>
 │   ├──> <isSoftSerialTransmitBufferEmpty((serialPort_t *)softSerial)>
 │   │   │   // Transmit buffer empty.
 │   │   │   // Start listening if not already in if half-duplex
 │   │   ├──> <!softSerial->rxActive && softSerial->port.options & SERIAL_BIDIR) {
 │   │   │   ├──> serialOutputPortDeActivate(softSerial);
 │   │   │   └──> serialInputPortActivate(softSerial);
 │   │   └──> return;
 │   │    
 │   │   // data to send
 │   ├──> uint8_t byteToSend = softSerial->port.txBuffer[softSerial->port.txBufferTail++];
 │   ├──> <softSerial->port.txBufferTail >= softSerial->port.txBufferSize>
 │   │   └──> softSerial->port.txBufferTail = 0;
 │   │   
 │   │   // build internal buffer, MSB = Stop Bit (1) + data bits (MSB to LSB) + start bit(0) LSB
 │   ├──> softSerial->internalTxBuffer = (1 << (TX_TOTAL_BITS - 1)) | (byteToSend << 1);
 │   ├──> softSerial->bitsLeftToTransmit = TX_TOTAL_BITS;
 │   ├──> softSerial->isTransmittingData = true;
 │   └──> <softSerial->rxActive && (softSerial->port.options & SERIAL_BIDIR)>
 │       │   // Half-duplex: Deactivate receiver, activate transmitter
 │       ├──> serialInputPortDeActivate(softSerial);
 │       ├──> serialOutputPortActivate(softSerial);
 │       │
 │       │   // Start sending on next bit timing, as port manipulation takes time,
 │       │   // and continuing here may cause bit period to decrease causing sampling errors
 │       │   // at the receiver under high rates.
 │       │   // Note that there will be (little less than) 1-bit delay; take it as "turn around time".
 │       │   // XXX We may be able to reload counter and continue. (Future work.)
 │       └──> return;
 │
 │   // 发送bit数据:高/低 电平
 ├──> <softSerial->bitsLeftToTransmit>
 │   ├──> mask = softSerial->internalTxBuffer & 1;
 │   ├──> softSerial->internalTxBuffer >>= 1;
 │   │
 │   ├──> setTxSignal(softSerial, mask);
 │   ├──> softSerial->bitsLeftToTransmit--;
 │   └──> return;
 │
 │   // 发送数据后处理
 └──> softSerial->isTransmittingData = false;

2.5 processRxState

RX_TOTAL_BITS 10 bits format: start bit + 8 bits for one byte + stop bit

在这里插入图片描述

processRxState
 │   //Start bit处理
 ├──> <softSerial->isSearchingForStartBit>
 │   └──> return;
 ├──> softSerial->rxBitIndex++;
 │
 │   //1 Byte数据处理
 ├──> <softSerial->rxBitIndex == RX_TOTAL_BITS - 1>
 │   ├──> applyChangedBits(softSerial);
 │   └──> return;
 │   //Stop bit处理
 └──> <softSerial->rxBitIndex == RX_TOTAL_BITS>
     ├──> softSerial->rxEdge == TRAILING>
     │   └──> softSerial->internalRxBuffer |= STOP_BIT_MASK;
     ├──> extractAndStoreRxByte(softSerial);
     └──> prepareForNextRxByte(softSerial);

注:上述函数过程存在10bit缺损卡死的情况,代码还不够robust。

3. 辅助函数

3.1 applyChangedBits

1~9 bit数据将通过该函数进行存储,最后10bit数据将在processRxState中进行保存。

applyChangedBits
 └──> <softSerial->rxEdge == TRAILING>
     └──> for (bitToSet = softSerial->rxLastLeadingEdgeAtBitIndex; bitToSet < softSerial->rxBitIndex; bitToSet++)
         └──> softSerial->internalRxBuffer |= 1 << bitToSet;

3.2 extractAndStoreRxByte

从10 bit格式中抽取1Byte有效数据。

extractAndStoreRxByte
 │   //仅TX模式,无需进行任何接收字节的保存工作
 ├──> <(softSerial->port.mode & MODE_RX) == 0>
 │   └──> return;
 │   
 ├──> uint8_t haveStartBit = (softSerial->internalRxBuffer & START_BIT_MASK) == 0;
 ├──> uint8_t haveStopBit = (softSerial->internalRxBuffer & STOP_BIT_MASK) == 1;
 │  
 │   //起止bit位,若一项不符合规格,则丢弃数据
 ├──> <!haveStartBit || !haveStopBit>
 │   ├──> softSerial->receiveErrors++;
 │   └──> return;
 │  
 │   //保存1Byte数据
 ├──> uint8_t rxByte = (softSerial->internalRxBuffer >> 1) & 0xFF;
 │  
 ├──> <softSerial->port.rxCallback> //回调接收函数
 │   └──> softSerial->port.rxCallback(rxByte, softSerial->port.rxCallbackData);
 └──> < else > //无接收注册函数情况下,将数据存入缓冲buffer中,并采用循环方式覆盖保存
     ├──> softSerial->port.rxBuffer[softSerial->port.rxBufferHead] = rxByte;
     └──> softSerial->port.rxBufferHead = (softSerial->port.rxBufferHead + 1) % softSerial->port.rxBufferSize;

3.3 prepareForNextRxByte

收录下一字节数据做预处理工作。

prepareForNextRxByte
 ├──> softSerial->rxBitIndex = 0;
 ├──> softSerial->isSearchingForStartBit = true;
 └──> <softSerial->rxEdge == LEADING>
     ├──> softSerial->rxEdge = TRAILING;
     ├──> timerChConfigIC(softSerial->timerHardware, (softSerial->port.options & SERIAL_INVERTED) ? ICPOLARITY_RISING : ICPOLARITY_FALLING, 0);
     └──> serialEnableCC(softSerial);

4. 总结

SoftSerial代码角度,采用定时器、边沿中断的方式,随机使用CPU资源。如果应用在高速、大数据量通信场景,将会影响和打扰CPU正常业务逻辑,尤其是在CPU资源紧张时。

5. 参考资料

【1】BetaFlight开源代码框架简介
【2】Betaflight关于STM32F405 SBUS协议兼容硬件电气特性问题
【3】BetaFlight模块设计之三十七:SBUS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值