【 声明:版权所有,转载请标明出处,请勿用于商业用途。 联系信箱:libin493073668@sina.com】
题意:
一条街程直线排列,街道上有一些房子,一个小偷去偷东西,每个房子里面都有一个价值,要求小偷在不偷相邻的房子的情况下,能得到的最大价值是多少
思路:
dp[i][j]代表小偷对于第i个房子采取的行动,j=0代表不偷,j=1代表偷
那么就能得到状态转移方程:
dp[i][0] = max(dp[i-1][0],dp[i-1][1]);
dp[i][1] = dp[i-1][0]+nums[i];
dp[i][1] = dp[i-1][0]+nums[i];
class Solution
{
public:
int rob(vector<int>& nums)
{
int len = nums.size();
int (*dp)[2] = new int[len+1][2];
int i,j;
if(len)
{
dp[0][0] = 0;
dp[0][1] = nums[0];
for(i = 1; i<len; i++)
{
dp[i][0] = max(dp[i-1][0],dp[i-1][1]);
dp[i][1] = dp[i-1][0]+nums[i];
}
return max(dp[len-1][0],dp[len-1][1]);
}
return 0;
}
};