【leedcode】198. House Robber

题目:

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

分析:用动态规划的方法来算。设f(n)为以第n位为结尾的数组的所有抢劫方案中获利最大的方案。则,f(n) = max(f(n-1),f(n-2) + [n])。由此关系即可得到答案、

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
using namespace std;
int all[50000];
int Themax(int n, vector<int>& nums) {
if (n == 1) return all[1];
if (n == 0) return all[0];
int t1, t2;
if (all[n - 1] != 0) t1 = all[n - 1];
else {
t1 = Themax(n - 1,nums);
}
if (all[n - 2] != 0) t2 = all[n - 2];
else {
t2 = Themax(n - 2, nums);
}
int res;
res = max(t1, t2 + nums[n]);
all[n] = res;
return res;


}
class Solution {
public:
int rob(vector<int>& nums) {
memset(all, 0, 50000);
if (nums.empty()) return 0;
all[1] = max(nums[0], nums[1]);
all[0] = nums[0];
return Themax(nums.size() - 1, nums);
}
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值