最近在研究c语言的后端http服务器的时候遇到了一个问题,一般来说前端发起一个请求,收到之后建立连接新建线程处理请求,结束之后就关闭线程,流程没有什么问题,但是当请求很多,处理又比较简单的时候,新建线程就显得很费,所以引入线程池的方式来减少创建线程的开销。
线程池(Thread Pool)是一种并发编程中常用的技术,用于管理和重用线程。它通过减少线程的创建和销毁次数,以及控制并发执行的线程数量,来提高系统的性能和资源利用率。
以下是具体实现过程:
.c文件
#include <cstdio>
extern "C"{
#include "threadPool.h"
/**
*@brief 搜索待执行的任务
*@param callback 返回的回调函数指针
*@return 如果找到了就返回对应的下标
*
* */
int thread_poolsearch(void (**callback)(void *),thread_pool * mthpool){
if(mthpool->inited==0) return -1; //线程池未初始化
for (int i = 0; i < MAX_THREADNUM; i++) {
if(mthpool->tasklistlist[i].used==1){
*callback = mthpool->tasklistlist[i].task_run;
mthpool->tasklistlist[i].used=0;
return i;
}
}
return -1;
}
/**
*@brief 线程池中插入
*@param callback 要运行的函数
*@param arg 函数传入的参数
*@param mthpool 线程池
*
* */
int thread_pooltaskpush(void (*callback)(void *),void * arg,thread_pool * mthpool){
if(mthpool->task_busy >=MAX_THREADNUM) return -1;
pthread_mutex_lock(&mthpool->jobs_mutex);//临界段
for (int i = 0; i < MAX_THREADNUM; i++) {
if(mthpool->tasklistlist[i].used==0){
mthpool->tasklistlist[i].task_run = callback;
mthpool->tasklistlist[i].arg = arg;
pthread_cond_signal(&mthpool->jobs_cond); //产生信号
mthpool->tasklistlist[i].used =1;
pthread_mutex_unlock(&mthpool->jobs_mutex);
return 0;
}
}
pthread_mutex_unlock(&mthpool->jobs_mutex);
return -1; //满了
}
static void* threadpool_callback(void* arg) {
thread_pool * mthpool_thread = (thread_pool *)arg;
void (*thread_run)(void *) =NULL;
int ret=0;
printf("线程开启\n");
while (1){
pthread_mutex_lock(&mthpool_thread->jobs_mutex);
printf("线程等待信号量 进入阻塞\n");
pthread_cond_wait(&mthpool_thread->jobs_cond, &mthpool_thread->jobs_mutex);
printf("线程收到信号量 解除阻塞\n");
ret = thread_poolsearch(&thread_run,mthpool_thread);
printf("线程收到信号量 解除阻塞 ret=%d\n",ret);
if(ret>=0){
mthpool_thread->task_busy++; //运行前busy数量增加 1
}
pthread_mutex_unlock(&mthpool_thread->jobs_mutex);
if(ret>=0){
printf("线程收到信号量 解除阻塞 执行\n");
thread_run(mthpool_thread->tasklistlist[ret].arg);
}
pthread_mutex_lock(&mthpool_thread->jobs_mutex); //重新锁定减少占用
mthpool_thread->task_busy--;
pthread_mutex_unlock(&mthpool_thread->jobs_mutex);
}
pthread_exit(NULL);
}
//线程池初始化
int thread_poolinit(thread_pool * mthpool){
mthpool->jobs_mutex = PTHREAD_MUTEX_INITIALIZER;
mthpool->jobs_cond = PTHREAD_COND_INITIALIZER;
for (int i = 0; i < MAX_THREADNUM; i++) {
int ret = pthread_create(&mthpool->pthreadhandle[i], NULL,threadpool_callback, mthpool);
if (ret) {
return -1;
}
}
// mthpool->task_busy=MAX_THREADNUM;
mthpool->inited=1;
return 0;
}
.h文件
#ifndef _THREADPOOL_H
#define _THREADPOOL_H
extern "C"{
#include "pthread.h"
#define MAX_THREADNUM 10
struct tasklistnode{
void (*task_run)(void *arg);
void * arg;
int used; //1-有值待执行 0-执行结束或无值
};
struct thread_poolnode{
int inited;
pthread_cond_t jobs_cond;
pthread_mutex_t jobs_mutex;
struct tasklistnode tasklistlist[MAX_THREADNUM];
pthread_t pthreadhandle[MAX_THREADNUM];
int task_busy; //已创建线程中busy的线程个数
};
typedef struct tasklistnode tasklist;
typedef struct thread_poolnode thread_pool;
//线程池初始化
int thread_poolinit(thread_pool * mthpool);
/**
*@brief 线程池中插入
*@param callback 要运行的函数
*@param arg 函数传入的参数
*@param mthpool 线程池
* */
int thread_pooltaskpush(void (*callback)(void *),void * arg,thread_pool * mthpool);
使用示例:
thread_pool dasda1={0};
thread_poolinit(&dasda1);
thread_pooltaskpush(print_hello,&dasda1,&dasda1);
thread_pooltaskpush(print_hello2,&dasda1,&dasda1);
thread_pooltaskpush(print_hello3,&dasda1,&dasda1);
thread_pooltaskpush(print_hello3,&dasda1,&dasda1);
thread_pooltaskpush(print_hello3,&dasda1,&dasda1);
thread_pooltaskpush(print_hello3,&dasda1,&dasda1);
thread_pooltaskpush(print_hello3,&dasda1,&dasda1);
while (1){
sleep(1);
}
2024-12-11 更新发现一个更简洁好用的c 线程池实现
原文链接
源码如下:
condition.h
#ifndef _CONDITION_H_
#define _CONDITION_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <pthread.h>
//封装一个互斥量和条件变量作为状态
typedef struct condition
{
pthread_mutex_t pmutex;
pthread_cond_t pcond;
}condition_t;
//对状态的操作函数
int condition_init(condition_t *cond);
int condition_lock(condition_t *cond);
int condition_unlock(condition_t *cond);
int condition_wait(condition_t *cond);
int condition_timedwait(condition_t *cond, const struct timespec *abstime);
int condition_signal(condition_t* cond);
int condition_broadcast(condition_t *cond);
int condition_destroy(condition_t *cond);
#ifdef __cplusplus
}
#endif
#endif
condition.c
#include "condition.h"
//初始化
int condition_init(condition_t *cond)
{
int status;
if((status = pthread_mutex_init(&cond->pmutex, NULL)))
return status;
if((status = pthread_cond_init(&cond->pcond, NULL)))
return status;
return 0;
}
//加锁
int condition_lock(condition_t *cond)
{
return pthread_mutex_lock(&cond->pmutex);
}
//解锁
int condition_unlock(condition_t *cond)
{
return pthread_mutex_unlock(&cond->pmutex);
}
//等待
int condition_wait(condition_t *cond)
{
return pthread_cond_wait(&cond->pcond, &cond->pmutex);
}
//固定时间等待
int condition_timedwait(condition_t *cond, const struct timespec *abstime)
{
return pthread_cond_timedwait(&cond->pcond, &cond->pmutex, abstime);
}
//唤醒一个睡眠线程
int condition_signal(condition_t* cond)
{
return pthread_cond_signal(&cond->pcond);
}
//唤醒所有睡眠线程
int condition_broadcast(condition_t *cond)
{
return pthread_cond_broadcast(&cond->pcond);
}
//销毁互斥锁和条件变量
int condition_destroy(condition_t *cond)
{
int status;
if((status = pthread_mutex_destroy(&cond->pmutex)))
return status;
if((status = pthread_cond_destroy(&cond->pcond)))
return status;
return 0;
}
threadpool.h
#ifndef _THREAD_POOL_H_
#define _THREAD_POOL_H_
#ifdef __cplusplus
extern "C" {
#endif
//需要引入状态的头文件--条件变量和互斥锁
#include "condition.h"
//封装线程池中的对象需要执行的任务对象
typedef struct task
{
void *(*run)(void *args); //函数指针,需要执行的任务
void *arg; //参数
struct task *next; //任务队列中下一个任务
}task_t;
//下面是线程池结构体
typedef struct threadpool
{
condition_t ready; //状态量
task_t *first; //任务队列中第一个任务
task_t *last; //任务队列中最后一个任务
int counter; //线程池中已有线程数
int idle; //线程池中空闲线程数
int max_threads; //线程池最大线程数
int quit; //是否退出标志 1/0
}threadpool_t;
//线程池初始化
void threadpool_init(threadpool_t *pool, int idle_threads, int max_threads);
//往线程池中加入任务
int threadpool_add_task(threadpool_t *pool, void *(*run)(void *arg), void *arg);
//摧毁线程池
void threadpool_destroy(threadpool_t *pool);
#ifdef __cplusplus
}
#endif
#endif
threadpool.c
#include "threadpool.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <time.h>
//线程池中创建的线程执行
void *thread_routine(void *arg)
{
struct timespec abstime;//时间结构体
int timeout;
printf("thread %d is starting\n", (int)pthread_self());
threadpool_t *pool = (threadpool_t *)arg;
//死循环使线程池中空闲的线程可以复用
while(1)
{
timeout = 0;
//访问线程池之前需要加锁
condition_lock(&pool->ready);
//空闲
pool->idle++;
//任务队列没有任务到来并且没有收到线程池销毁通知, 线程阻塞等待(进入这里面都是空闲线程,等待被唤醒)
while(pool->first == NULL && !pool->quit)
{
printf("thread %d is waiting\n", (int)pthread_self());
//获取当前时间,并加上等待时间, 从而设置进程的超时睡眠时间
clock_gettime(CLOCK_REALTIME, &abstime);
abstime.tv_sec += 2;
int status;
status = condition_timedwait(&pool->ready, &abstime); //该函数会解锁,允许其他线程访问,当被唤醒时,加锁
if(status == ETIMEDOUT)
{
printf("thread %d wait timed out\n", (int)pthread_self());
timeout = 1;
break;
}
}
pool->idle--;
if(pool->first != NULL)
{
//取出任务队列最前的任务,移除任务,并执行任务
task_t *t = pool->first;
pool->first = t->next;
//由于任务执行需要消耗时间,先解锁让其他线程访问线程池
condition_unlock(&pool->ready);
//执行任务
t->run(t->arg);
//执行完任务释放内存
free(t);
//重新加锁
condition_lock(&pool->ready);
}
//退出线程池--销毁当前线程
if(pool->quit && pool->first == NULL)
{
pool->counter--;//当前工作的线程数-1
//若线程池中没有线程,唤醒等待线程(主线程--销毁线程池的线程)全部任务已经完成
if(pool->counter == 0)
{
condition_signal(&pool->ready);
}
condition_unlock(&pool->ready);
break;
}
//超时,说明线程没有任务可以执行, 跳出销毁线程
if(timeout == 1)
{
pool->counter--;//当前工作的线程数-1
condition_unlock(&pool->ready);
break;
}
condition_unlock(&pool->ready);
}
printf("thread %d is exiting\n", (int)pthread_self());
return NULL;
}
//线程池初始化
void threadpool_init(threadpool_t *pool, int idle_threads, int max_threads)
{
condition_init(&pool->ready);
pool->first = NULL;
pool->last =NULL;
pool->counter =0;
pool->idle =0;
pool->max_threads = max_threads;
pool->quit =0;
//创建空闲线程
int i = 0;
for(; i < idle_threads; i++)
{
pthread_t tid;
pthread_create(&tid, NULL, thread_routine, pool);
pool->counter++;//已有线程数+1
}
}
//增加一个任务到线程池
int threadpool_add_task(threadpool_t *pool, void *(*run)(void *arg), void *arg)
{
//产生一个新的任务
task_t *newtask = (task_t *)malloc(sizeof(task_t));
newtask->run = run;
newtask->arg = arg;
newtask->next=NULL;//新加的任务放在队列尾端
//线程池的状态被多个线程共享,操作前需要加锁
condition_lock(&pool->ready);
if(pool->first == NULL)//第一个任务加入
{
pool->first = newtask;
}
else
{
pool->last->next = newtask;
}
pool->last = newtask; //队列尾指向新加入的线程
//线程池中有线程空闲,唤醒处于等待状态的线程(因为在等待期间会释放互斥锁)
if(pool->idle > 0)
{
condition_signal(&pool->ready);
}
//当前线程池中线程个数没有达到设定的最大值,创建一个新的线程
else if(pool->counter < pool->max_threads)
{
pthread_t tid;
pthread_create(&tid, NULL, thread_routine, pool);
pool->counter++;
}
else
{
condition_unlock(&pool->ready);
return -1;
}
//结束,访问
condition_unlock(&pool->ready);
return 0;
}
//线程池销毁
void threadpool_destroy(threadpool_t *pool)
{
//如果已经调用销毁,直接返回
if(pool->quit)
{
return;
}
//加锁
condition_lock(&pool->ready);
//设置销毁标记为1
pool->quit = 1;
//线程池中线程个数大于0
if(pool->counter > 0)
{
//对于等待的线程,发送信号唤醒
if(pool->idle > 0)
{
condition_broadcast(&pool->ready);
}
//正在执行任务的线程,等待他们结束任务
while(pool->counter)
{
condition_wait(&pool->ready);
}
}
condition_unlock(&pool->ready);
condition_destroy(&pool->ready);
}
测试代码
#include <stdio.h>
#include "threadpool.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
void* mytask(void *arg)
{
int i = *((int*)(arg));
printf("thread %d is working on task %d\n", (int)pthread_self(),i);
sleep(i+1);
}
//测试代码
int main(void)
{
threadpool_t pool;
//初始化线程池,创建2个空闲线程,最多5个线程
threadpool_init(&pool, 2, 2);
int i;
int data[10]={0};
//创建十个任务
for(i=0; i < 10; i++)
{
data[i]=i;
threadpool_add_task(&pool, mytask, &data[i]);
}
printf("完毕\n");
threadpool_destroy(&pool);
return 0;
}