PE 107 Minimal network (MST)

本文探讨了一个经典的图论问题——最小生成树(MST),通过具体实例介绍如何从一个加权无向图中找到总权重最小的子图,确保所有顶点仍保持连通,并给出了一种实现Prim算法的C++代码,用于解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Minimal network

Problem 107

The following undirected network consists of seven vertices and twelve edges with a total weight of 243.


The same network can be represented by the matrix below.


ABCDEFG
A-161221---
B16--1720--
C12--28-31-
D211728-181923
E-20-18--11
F--3119--27
G---231127-

However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected. The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 − 93 = 150 from the original network.


Using network.txt (right click and 'Save Link/Target As...'), a 6K text file containing a network with forty vertices, and given in matrix form, find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected.


题解:Minimum Spanning Tree...

代码:

#include<bits/stdc++.h>
#define MIN INT_MAX
#define MAX_Point 1200   //最大顶点数 
#define MAX_Edge 144000  //最大的边数 
using namespace std;
typedef long long ll;
int flag1 =0;
ll sum;
ll arr_list[MAX_Point][MAX_Point]; 
struct Edge
{
	ll point;
	ll lowcost;
	ll flag;
};
Edge edge[MAX_Edge];
ll prim(int n)
{
	ll i,j,k=1,flag;
	ll min,sum2=0;
	j=1;
	for(i=1;i<=n;i++)
	{
		if(i!=j)
		{
			edge[i].point=i;
			edge[i].lowcost=arr_list[j][i];
			edge[i].flag=0;
		}
	}
	edge[j].lowcost=0;
	edge[j].flag=1;
	for(i=2;i<=n;i++)
	{
		k=1;
		min=MIN;
		flag=0;
		for(j=2;j<=n;j++)
		{
			if(edge[j].flag==0 && edge[j].lowcost<min)
			{
				k=j;
				min=edge[j].lowcost;
				flag=1;
			}
		}
		if(!flag) return -1;
		
		sum2+=min;
		edge[k].flag=1;
		for(j=2;j<=n;j++)
		{
			if(edge[j].flag==0 && arr_list[k][j]<edge[j].lowcost)
			{
				edge[j].point=k;
				edge[j].lowcost=arr_list[k][j];
			}
		}
	}
	return sum2;
}

int main()
{
	
	ll sum0=0;
	freopen("in.txt","r",stdin);
	for(int i=1;i<=40;i++)
	{
		for(int j=1;j<=40;j++)
		{
			cin>>arr_list[i][j];
			sum0 += arr_list[i][j];
			if(arr_list[i][j]==0)
			arr_list[i][j]=0xfffffff;
		//	if(arr_list=='-')
		}
	}
	sum0/=2;
	ll ans=0;
	ans=prim(40);
	cout<<sum0<<endl;
	cout<<sum0-ans<<endl;
	return 0;
}
/*
0 16 12 21 0 0 0
16 0 0 17 20 0 0
12 0 0 28 0 31 0
21 17 28 0 18 19 23
0 20 0 18 0 0 11
0 0 31 19 0 0 27
0 0 0 23 11 27 0
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值