Reciprocal cycles
Problem 26
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
题解:模拟除法。
代码:
#include <iostream>
#include <set>
using namespace std;
int main()
{
set<int> s;
int num,k,flag;
int ans = 0 ,ANS = 0 , maxn ;
num = 1 ;
for (int i = 1 ; i < 1000 ; i++ )
{
num = 1; //分子
k = i; //分母
flag = 1;
s.clear();
//模拟
while (flag)
{
if ( num < k )
num *= 10 ;
//find():返回给定值的定位器,如果没找到则返回end()。
flag = s.find(num%k) == s.end() ? 1: 0;
//没找到就 insert
if (flag) s.insert(num%k);
num = num%k ;
}
//统计个数
ans = s.size();
if (ans > ANS )
{
ANS = ans ;
maxn = i ;
}
}
cout<<maxn<<endl;
return 0;
}