Problem 23 Non-abundant sums (盈数)

本文探讨了完美数、不足数及丰数的概念,并通过数学分析表明所有大于28123的整数都可以表示为两个丰数之和。提供了一个算法实现,用于找出所有不能表示为两个丰数之和的正整数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Non-abundant sums

Problem 23

A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.

A number n is called deficient if the sum of its proper divisors is less than n and it is called abundant if this sum exceeds n.

As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


Answer:
4179871
Completed on Fri, 28 Oct 2016, 05:05

代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <fstream>
#include <cctype>

using namespace std;
bool isabundant (int n)
{
	long long sum=1;
	int k=n;
	for(int i=2;i<=k;i++)
	{
		int p=1;
		while(k%i==0)
		{
			p*=i;
			k/=i;
		}
		sum*=(p*i-1)/(i-1);
	}
	return sum-n>n;
}
vector<int>abundant;
int main()
{
	int flag[28123]={0};
    int ans=0;
	for(int i=1;i<=28123;i++)
	{
		if(isabundant(i))//abundant数 
		{
			abundant.push_back(i);
		}
	}
	for(int i=0;i<abundant.size();i++)
	for(int j=i;j<abundant.size();j++)
	{
		if(abundant[i]+abundant[j]<28123)
		{
			flag[abundant[i]+abundant[j]]=1;
		}
		else break;
	}
	for(int i=0;i<28123;i++)
	{
		if(flag[i]==0)
		ans+=i;
	}
	cout<<ans<<endl;
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值