Bellovin
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 540 Accepted Submission(s): 254
Problem Description
Peter has a sequence
a
1
,a
2
,...,a
n![]()
and he define a function on the sequence --
F(a
1
,a
2
,...,a
n
)=(f
1
,f
2
,...,f
n
)
, where
f
i![]()
is the length of the longest increasing subsequence ending with
a
i![]()
.
Peter would like to find another sequence b
1
,b
2
,...,b
n![]()
in such a manner that
F(a
1
,a
2
,...,a
n
)
equals to
F(b
1
,b
2
,...,b
n
)
. Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.
The sequence a
1
,a
2
,...,a
n![]()
is lexicographically smaller than sequence
b
1
,b
2
,...,b
n![]()
, if there is such number
i
from
1
to
n
, that
a
k
=b
k![]()
for
1≤k<i
and
a
i
<b
i![]()
.
Peter would like to find another sequence b
The sequence a
Input
There are multiple test cases. The first line of input contains an integer
T
, indicating the number of test cases. For each test case:
The first contains an integer n
(1≤n≤100000)
-- the length of the sequence. The second line contains
n
integers
a
1
,a
2
,...,a
n![]()
(1≤a
i
≤10
9
)
.
The first contains an integer n
Output
For each test case, output
n
integers
b
1
,b
2
,...,b
n![]()
(1≤b
i
≤10
9
)
denoting the lexicographically smallest sequence.
Sample Input
3 1 10 5 5 4 3 2 1 3 1 3 5
Sample Output
1 1 1 1 1 1 1 2 3
Source
Recommend
wange2014
题解:求以ai结尾的最长上升子序列(LIS)为多少。
就是求LIS。
AC代码:
//#include<bits/stdc++.h>
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
#define N 1000010
using namespace std;
int n,a[N];
int b[N];
int cnt;
int s[N];
int f[N];
int query(int x)
{
int ret =0;
while(x){
ret= max(ret,s[x]);
x-= x&-x;
}
return ret;
}
void update(int x,int y)
{
while(x<=cnt)
{
s[x]=max(s[x],y);
x+=x&-x;
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
cnt=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[++cnt]=a[i];
}
sort(b+1,b+cnt+1);
cnt=unique(b+1,b+cnt+1)-b-1;
for(int i=1;i<=n;i++)
{
a[i]=lower_bound(b+1,b+cnt+1,a[i])-b;
}
for(int i=1;i<=cnt;i++) s[i]=0;
for(int i=1;i<=n;i++)
{
f[i]=query(a[i]-1)+1;
update(a[i],f[i]);
printf("%d%c",f[i],i==n?'\n':' ');
}
}
return 0;
}