For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1 :
Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
Output: [1]
Example 2 :
Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
Output: [3, 4]
Note:
According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-height-trees
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
要找的节点是这个多叉树里面的最长路径的中间一个或两个节点,用多源bfs算法,首先找到所有边缘的节点,即入度为零的节点,然后每次遍历都把剩下的边缘节点都删除掉,删除到最后,就是我们的要的节点。
class Solution {
public List<Integer> findMinHeightTrees(int n, int[][] edges) {
boolean dp[][] = new boolean[n][n];
List <Integer> ans = new ArrayList<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dp[i][j] = false;
}
ans.add(i);
}
if (ans.size() <= 2) {
return ans;
}
// 计算所有节点的入度
int[] count = new int[n];
for (int i = 0; i < edges.length; i++) {
dp[edges[i][0]][edges[i][1]] = true;
dp[edges[i][1]][edges[i][0]] = true;
count[edges[i][0]]++;
count[edges[i][1]]++;
}
// 找到入度为1的边缘节点
List<Integer> inter = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (count[i] == 1) {
inter.add(i);
}
}
while (!inter.isEmpty()) {
for (int i : inter) {
for (int j = 0; j < n; j++) {
if (dp[i][j]) {
count[j]--;
}
}
count[i]--;
ans.remove((Integer) i);
}
inter.clear();
for (int j = 0; j < n; j++) {
if (count[j] == 1) {
inter.add(j);
}
}
if (ans.size() <= 2) {
return ans;
}
}
return ans;
}
}

854

被折叠的 条评论
为什么被折叠?



