嵌入式–环形缓冲(1)
感谢RT-Thread Development Team,这个模块是他们设计出来,很好用,一直用到现在,之所以取名为环形缓冲(1),还有一个取自于linux的环形缓冲,在下一篇文件粘贴出来,感谢大佬们。
头文件 ringbuffer.h
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#ifndef RINGBUFFER_H__
#define RINGBUFFER_H__
#ifdef __cplusplus
extern "C" {
#endif
#include "stdint.h"
#include "stdio.h"
#include "string.h"
#define RTM_EXPORT(symbol)
#define RT_ASSERT(EX) \
//if (!(EX)) \
//{ \
// printf("(%s) assertion failed at function:%s, line number:%d \n",#EX, __FUNCTION__, __LINE__); \
//}
#define RT_ALIGN_DOWN(size, align) ((size) & ~((align) - 1))
#define RT_ALIGN_SIZE 4
/* ring buffer */
struct rt_ringbuffer
{
uint8_t *buffer_ptr;
/* use the msb of the {read,write}_index as mirror bit. You can see this as
* if the buffer adds a virtual mirror and the pointers point either to the
* normal or to the mirrored buffer. If the write_index has the same value
* with the read_index, but in a different mirror, the buffer is full.
* While if the write_index and the read_index are the same and within the
* same mirror, the buffer is empty. The ASCII art of the ringbuffer is:
*
* mirror = 0 mirror = 1
* +---+---+---+---+---+---+---+|+~~~+~~~+~~~+~~~+~~~+~~~+~~~+
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 ||| 0 | 1 | 2 | 3 | 4 | 5 | 6 | Full
* +---+---+---+---+---+---+---+|+~~~+~~~+~~~+~~~+~~~+~~~+~~~+
* read_idx-^ write_idx-^
*
* +---+---+---+---+---+---+---+|+~~~+~~~+~~~+~~~+~~~+~~~+~~~+
* | 0 | 1 | 2 | 3 | 4 | 5 | 6 ||| 0 | 1 | 2 | 3 | 4 | 5 | 6 | Empty
* +---+---+---+---+---+---+---+|+~~~+~~~+~~~+~~~+~~~+~~~+~~~+
* read_idx-^ ^-write_idx
*
* The tradeoff is we could only use 32KiB of buffer for 16 bit of index.
* But it should be enough for most of the cases.
*
* Ref: http://en.wikipedia.org/wiki/Circular_buffer#Mirroring */
uint16_t read_mirror : 1;
uint16_t read_index : 15;
uint16_t write_mirror : 1;
uint16_t write_index : 15;
/* as we use msb of index as mirror bit, the size should be signed and
* could only be positive. */
uint16_t buffer_size;
};
enum rt_ringbuffer_state
{
RT_RINGBUFFER_EMPTY,
RT_RINGBUFFER_FULL,
/* half full is neither full nor empty */
RT_RINGBUFFER_HALFFULL,
};
/**
* RingBuffer for DeviceDriver
*
* Please note that the ring buffer implementation of RT-Thread
* has no thread wait or resume feature.
*/
void rt_ringbuffer_init(struct rt_ringbuffer *rb, uint8_t *pool, uint16_t size);
void rt_ringbuffer_reset(struct rt_ringbuffer *rb);
unsigned long rt_ringbuffer_put(struct rt_ringbuffer *rb, const uint8_t *ptr, uint16_t length);
unsigned long rt_ringbuffer_put_force(struct rt_ringbuffer *rb, const uint8_t *ptr, uint16_t length);
unsigned long rt_ringbuffer_putchar(struct rt_ringbuffer *rb, const uint8_t ch);
unsigned long rt_ringbuffer_putchar_force(struct rt_ringbuffer *rb, const uint8_t ch);
unsigned long rt_ringbuffer_get(struct rt_ringbuffer *rb, uint8_t *ptr, uint16_t length);
unsigned long rt_ringbuffer_getchar(struct rt_ringbuffer *rb, uint8_t *ch);
unsigned long rt_ringbuffer_data_len(struct rt_ringbuffer *rb);
static __inline uint16_t rt_ringbuffer_get_size(struct rt_ringbuffer *rb)
{
RT_ASSERT(rb != NULL);
return rb->buffer_size;
}
/** return the size of empty space in rb */
#define rt_ringbuffer_space_len(rb) ((rb)->buffer_size - rt_ringbuffer_data_len(rb))
#ifdef __cplusplus
}
#endif
#endif
源文件 ringbuffer.c
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "ringbuffer.h"
static __inline enum rt_ringbuffer_state rt_ringbuffer_status(struct rt_ringbuffer *rb)
{
if (rb->read_index == rb->write_index)
{
if (rb->read_mirror == rb->write_mirror)
return RT_RINGBUFFER_EMPTY;
else
return RT_RINGBUFFER_FULL;
}
return RT_RINGBUFFER_HALFFULL;
}
void rt_ringbuffer_init(struct rt_ringbuffer *rb,
uint8_t *pool,
uint16_t size)
{
RT_ASSERT(rb != NULL);
RT_ASSERT(size > 0);
/* initialize read and write index */
rb->read_mirror = rb->read_index = 0;
rb->write_mirror = rb->write_index = 0;
/* set buffer pool and size */
rb->buffer_ptr = pool;
rb->buffer_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
}
RTM_EXPORT(rt_ringbuffer_init);
/**
* put a block of data into ring buffer
*/
unsigned long rt_ringbuffer_put(struct rt_ringbuffer *rb,
const uint8_t *ptr,
uint16_t length)
{
uint16_t size;
RT_ASSERT(rb != NULL);
/* whether has enough space */
size = rt_ringbuffer_space_len(rb);
/* no space */
if (size == 0)
return 0;
/* drop some data */
if (size < length)
length = size;
if (rb->buffer_size - rb->write_index > length)
{
/* read_index - write_index = empty space */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
/* this should not cause overflow because there is enough space for
* length of data in current mirror */
rb->write_index += length;
return length;
}
memcpy(&rb->buffer_ptr[rb->write_index],
&ptr[0],
rb->buffer_size - rb->write_index);
memcpy(&rb->buffer_ptr[0],
&ptr[rb->buffer_size - rb->write_index],
length - (rb->buffer_size - rb->write_index));
/* we are going into the other side of the mirror */
rb->write_mirror = ~rb->write_mirror;
rb->write_index = length - (rb->buffer_size - rb->write_index);
return length;
}
RTM_EXPORT(rt_ringbuffer_put);
/**
* put a block of data into ring buffer
*
* When the buffer is full, it will discard the old data.
*/
unsigned long rt_ringbuffer_put_force(struct rt_ringbuffer *rb,
const uint8_t *ptr,
uint16_t length)
{
uint16_t space_length;
RT_ASSERT(rb != NULL);
space_length = rt_ringbuffer_space_len(rb);
if (length > rb->buffer_size)
{
ptr = &ptr[length - rb->buffer_size];
length = rb->buffer_size;
}
if (rb->buffer_size - rb->write_index > length)
{
/* read_index - write_index = empty space */
memcpy(&rb->buffer_ptr[rb->write_index], ptr, length);
/* this should not cause overflow because there is enough space for
* length of data in current mirror */
rb->write_index += length;
if (length > space_length)
rb->read_index = rb->write_index;
return length;
}
memcpy(&rb->buffer_ptr[rb->write_index],
&ptr[0],
rb->buffer_size - rb->write_index);
memcpy(&rb->buffer_ptr[0],
&ptr[rb->buffer_size - rb->write_index],
length - (rb->buffer_size - rb->write_index));
/* we are going into the other side of the mirror */
rb->write_mirror = ~rb->write_mirror;
rb->write_index = length - (rb->buffer_size - rb->write_index);
if (length > space_length)
{
rb->read_mirror = ~rb->read_mirror;
rb->read_index = rb->write_index;
}
return length;
}
RTM_EXPORT(rt_ringbuffer_put_force);
/**
* get data from ring buffer
*/
unsigned long rt_ringbuffer_get(struct rt_ringbuffer *rb,
uint8_t *ptr,
uint16_t length)
{
unsigned long size;
RT_ASSERT(rb != NULL);
/* whether has enough data */
size = rt_ringbuffer_data_len(rb);
/* no data */
if (size == 0)
return 0;
/* less data */
if (size < length)
length = size;
if (rb->buffer_size - rb->read_index > length)
{
/* copy all of data */
memcpy(ptr, &rb->buffer_ptr[rb->read_index], length);
/* this should not cause overflow because there is enough space for
* length of data in current mirror */
rb->read_index += length;
return length;
}
memcpy(&ptr[0],
&rb->buffer_ptr[rb->read_index],
rb->buffer_size - rb->read_index);
memcpy(&ptr[rb->buffer_size - rb->read_index],
&rb->buffer_ptr[0],
length - (rb->buffer_size - rb->read_index));
/* we are going into the other side of the mirror */
rb->read_mirror = ~rb->read_mirror;
rb->read_index = length - (rb->buffer_size - rb->read_index);
return length;
}
RTM_EXPORT(rt_ringbuffer_get);
/**
* put a character into ring buffer
*/
unsigned long rt_ringbuffer_putchar(struct rt_ringbuffer *rb, const uint8_t ch)
{
RT_ASSERT(rb != NULL);
/* whether has enough space */
if (!rt_ringbuffer_space_len(rb))
return 0;
rb->buffer_ptr[rb->write_index] = ch;
/* flip mirror */
if (rb->write_index == rb->buffer_size-1)
{
rb->write_mirror = ~rb->write_mirror;
rb->write_index = 0;
}
else
{
rb->write_index++;
}
return 1;
}
RTM_EXPORT(rt_ringbuffer_putchar);
/**
* put a character into ring buffer
*
* When the buffer is full, it will discard one old data.
*/
unsigned long rt_ringbuffer_putchar_force(struct rt_ringbuffer *rb, const uint8_t ch)
{
enum rt_ringbuffer_state old_state;
RT_ASSERT(rb != NULL);
old_state = rt_ringbuffer_status(rb);
rb->buffer_ptr[rb->write_index] = ch;
/* flip mirror */
if (rb->write_index == rb->buffer_size-1)
{
rb->write_mirror = ~rb->write_mirror;
rb->write_index = 0;
if (old_state == RT_RINGBUFFER_FULL)
{
rb->read_mirror = ~rb->read_mirror;
rb->read_index = rb->write_index;
}
}
else
{
rb->write_index++;
if (old_state == RT_RINGBUFFER_FULL)
rb->read_index = rb->write_index;
}
return 1;
}
RTM_EXPORT(rt_ringbuffer_putchar_force);
/**
* get a character from a ringbuffer
*/
unsigned long rt_ringbuffer_getchar(struct rt_ringbuffer *rb, uint8_t *ch)
{
RT_ASSERT(rb != NULL);
/* ringbuffer is empty */
if (!rt_ringbuffer_data_len(rb))
return 0;
/* put character */
*ch = rb->buffer_ptr[rb->read_index];
if (rb->read_index == rb->buffer_size-1)
{
rb->read_mirror = ~rb->read_mirror;
rb->read_index = 0;
}
else
{
rb->read_index++;
}
return 1;
}
RTM_EXPORT(rt_ringbuffer_getchar);
/**
* get the size of data in rb
*/
unsigned long rt_ringbuffer_data_len(struct rt_ringbuffer *rb)
{
switch (rt_ringbuffer_status(rb))
{
case RT_RINGBUFFER_EMPTY:
return 0;
case RT_RINGBUFFER_FULL:
return rb->buffer_size;
case RT_RINGBUFFER_HALFFULL:
default:
if (rb->write_index > rb->read_index)
return rb->write_index - rb->read_index;
else
return rb->buffer_size - (rb->read_index - rb->write_index);
};
}
RTM_EXPORT(rt_ringbuffer_data_len);
/**
* empty the rb
*/
void rt_ringbuffer_reset(struct rt_ringbuffer *rb)
{
RT_ASSERT(rb != NULL);
rb->read_mirror = 0;
rb->read_index = 0;
rb->write_mirror = 0;
rb->write_index = 0;
}
RTM_EXPORT(rt_ringbuffer_reset);