codeforces 301D Yaroslav and Divisors

题目大意:

     给你n个数,然后问你区间内有几对数a,b(b%a=0)。

解决方法:

    将所有的区间都进行排序(按照左端点的大小),建立一个pre【i】数组,它表示i上一次出现在某个位置,pre【i】初始值为0.

    从右向左处理每个数字,将每个数字的因子与倍数k都求出来,然后树状数组进行add(pre[k],1)的操作。某段区间的答案就是sum(右端点)。

    为什么呢?想想如果k是i的因子或者倍数,i在pos1处,k在pos2处,那么所有区间包含pos1与pos2的都要加上1,我们又是左端点排序,所有直接求sum(右端点)就行了。

我的代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define maxn 1000000
using namespace std;
int pre[maxn];
long long tree[maxn];
struct Point {
  int x,y,id;
  long long ans;
}po[maxn];
int num[maxn];
int n,m;
int maxx;
int add(int x,long long v){
  for (int i=x;i<=n;i+=i&(-i))
      tree[i]+=v;
  return 0;
}
long long sum(int x){
  long long ans=0;
  for (int i=x;i>0;i-=i&(-i))
     ans+=tree[i];
  return ans;
}
int cmp(Point a,Point b){
  return a.y<b.y||a.y==b.y&&a.x<b.x||a.y==b.y&&a.x==b.x&&a.id<b.id;
}
int cmp1(Point a,Point b){
  return a.id<b.id;
}
int change(int n){
  for (int i=num[n]*2;i<=maxx;i+=num[n]){
      if (pre[i]) add(pre[i],1);
  }
  int k=(int)sqrt(num[n]);
  //cout<<"num "<<num[n]<<endl;
  for (int i=1;i<=k;i++)
    if(num[n]%i==0){
      //cout<<"*****"<<endl;
      if (i==k){
         if (k*k==num[n]){
        //    cout<<" i "<<i<<endl;
            if (pre[i]) add(pre[i],1);
         }
         else {
        //   cout<<" i "<<i<<endl;
         //  cout<<" i "<<num[n]/i<<endl;
           if (pre[i]) add(pre[i],1);
           if (pre[num[n]/i]) add(pre[num[n]/i],1);
         }
      }
      else {
      //  cout<<" i "<<i<<endl;
      //  cout<<" i "<<num[n]/i<<endl;
        if (pre[i]) add(pre[i],1);
        if (pre[num[n]/i]) add(pre[num[n]/i],1);
      }
    }
  add(n,1);
  pre[num[n]]=n;
  return 0;
}
int main (){
  //freopen("test.in","r",stdin);
  while (~scanf("%d%d",&n,&m)){
    memset(tree,0,sizeof(tree));
    for (int i=1;i<=n;i++) scanf("%d",&num[i]),pre[i]=0;
    for (int i=1;i<=m;i++){
        scanf("%d%d",&po[i].x,&po[i].y);
        po[i].id=i;
    }
    sort(po+1,po+m+1,cmp);
    int pos=1;
    maxx=0;
    for (int i=1;i<=m;i++){
        while (pos<=po[i].y&&pos<=n){
            change(pos);
            maxx=max(maxx,num[pos]);
            pos++;
        }
        if (po[i].x>1)po[i].ans=sum(po[i].y)-sum(po[i].x-1);
        else po[i].ans=sum(po[i].y);
    }
    sort(po+1,po+m+1,cmp1);
    for (int i=1;i<=m;i++)
        printf("%I64d\n",po[i].ans);
  }
  return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值