hdoj 48119 Mosaic (二维线段树 单点更新)

本文探讨了一种使用二维线段树技术在图像处理中的应用,特别是如何在给定的图像上进行像素化的操作。通过将图像划分为N×N个单元格,并在指定位置执行特定的更新和查询操作,实现对图像的像素化效果。详细介绍了二维线段树的数据结构、构建、更新和查询方法,以及如何将其应用于图像像素化任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mosaic

点击打开链接

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 1016    Accepted Submission(s): 449


Problem Description
The God of sheep decides to pixelate some pictures (i.e., change them into pictures with mosaic). Here's how he is gonna make it: for each picture, he divides the picture into n x n cells, where each cell is assigned a color value. Then he chooses a cell, and checks the color values in the L x L region whose center is at this specific cell. Assuming the maximum and minimum color values in the region is A and B respectively, he will replace the color value in the chosen cell with floor((A + B) / 2).

Can you help the God of sheep?
 

Input
The first line contains an integer T (T ≤ 5) indicating the number of test cases. Then T test cases follow.

Each test case begins with an integer n (5 < n < 800). Then the following n rows describe the picture to pixelate, where each row has n integers representing the original color values. The j-th integer in the i-th row is the color value of cell (i, j) of the picture. Color values are nonnegative integers and will not exceed 1,000,000,000 (10^9).

After the description of the picture, there is an integer Q (Q ≤ 100000 (10^5)), indicating the number of mosaics.

Then Q actions follow: the i-th row gives the i-th replacement made by the God of sheep: xi, yi, Li (1 ≤ xi, yi ≤ n, 1 ≤ Li < 10000, Li is odd). This means the God of sheep will change the color value in (xi, yi) (located at row xi and column yi) according to the Li x Li region as described above. For example, an query (2, 3, 3) means changing the color value of the cell at the second row and the third column according to region (1, 2) (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4). Notice that if the region is not entirely inside the picture, only cells that are both in the region and the picture are considered.

Note that the God of sheep will do the replacement one by one in the order given in the input.
 

Output
For each test case, print a line "Case #t:"(without quotes, t means the index of the test case) at the beginning.

For each action, print the new color value of the updated cell.
 

Sample Input
  
1 3 1 2 3 4 5 6 7 8 9 5 2 2 1 3 2 3 1 1 3 1 2 3 2 2 3
 

Sample Output
  
Case #1: 5 6 3 4 6
 
题意:
给出一个图片,分成N×N个单元格,有M次操作,每次操作将(x,y)的值变为以(x,y) 为中心L(L为奇数)为边长的区域内的最小值和最大值的均值(floor((maximum+minimum)/2)),并输出该值。
分析:
明显的二维线段树的单点更新和区间查询,维护最值。
更新肯定是先在二维内找到叶子节点的那棵线段树,然后再在这棵树上更新,这部分很简单,就想成一维的写。但是这毕竟是二维线段树,二维的部分也需要维护,当然这部分比较麻烦,我们先想一想一维的:一维的节点维护的是值,我们只要根据它的左右儿子的信息维护(pushup)就行。二维的节点维护的是树(一维的线段树),类比一下,我们也需要根据它的左右儿子来维护,但是我们并不能简单地通过pushup来维护它的信息(因为一个节点对应的是一棵一维线段树,而不是一个线段),我们要进入这棵一维线段树中去维护各个点(线段)的信息。
维护好过后查询就方便了,简单地降维即可。

这是我看着匡冰大神的博客写的,第一次写这玩意儿,自己写老是错,求大神指点
我写的代码大哭大哭
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define MAX  1010
#define inf 0x7fffffff
struct node
{
	int L;
	int R;
	int vmax;
	int vmin;
};

struct node1
{
	int hl;
	int hr;
	node subt[4*MAX];
}t[4*MAX];

void build_subt(int v,int rt,int l,int r)
{
 t[v].subt[rt].L=l;
 t[v].subt[rt].R=r;
 t[v].subt[rt].vmax=-inf;
 t[v].subt[rt].vmin=inf;
 if(l==r)
   return ;
  int mid=(l+r)>>1;
  build_subt(v,rt<<1,l,mid);
  build_subt(v,rt<<1|1,mid+1,r);
} 

void build(int v,int l,int r,int ll,int rr)
{
	t[v].hl=l;
	t[v].hr=r;
	build_subt(v,1,ll,rr);
	if(l==r)
	return ;
	int mid=(l+r)>>1;
	build(v<<1,l,mid,ll,rr);
	build(v<<1|1,mid+1,r,ll,rr);
}

void update_subt(int v,int rt,int pos,int x)
{
	t[v].subt[rt].vmax=max(x,t[v].subt[rt].vmax); 
	t[v].subt[rt].vmin=min(x,t[v].subt[rt].vmin); 
	if(t[v].subt[rt].L==t[v].subt[rt].R)
	return ;
	int mid=(t[v].subt[rt].L+t[v].subt[rt].R)>>1;
	if(pos<=mid)
	update_subt(v,rt<<1,pos,x);
	else
	update_subt(v,rt<<1|1,pos,x);
	t[v].subt[rt].vmax=max(t[v].subt[rt<<1].vmax,t[v].subt[rt<<1|1].vmax);
	t[v].subt[rt].vmin=min(t[v].subt[rt<<1].vmin,t[v].subt[rt<<1|1].vmin);
}

void update(int v,int cur,int x,int y)
{
	update_subt(v,1,x,y);
	if(t[v].hl==t[v].hr)
	return ;
	int mid=(t[v].hl+t[v].hr)>>1;
	if(cur<=mid)
	update(v<<1,cur,x,y);
	else
	update(v<<1|1,cur,x,y);
}

int query_subtmax(int v,int rt,int l,int r)
{
	if(t[v].subt[rt].L==l&&t[v].subt[rt].R==r)
	return t[v].subt[rt].vmax;
	int mid=(t[v].subt[rt].L+t[v].subt[rt].R)>>1;
	if(r<=mid)
	 return query_subtmax(v,rt<<1,l,r);
	else if(l>mid)
	return query_subtmax(v,rt<<1|1,l,r);
	else
	return max(query_subtmax(v,rt<<1,l,mid),query_subtmax(v,rt<<1|1,mid+1,r));
	 
}

int querymax(int v,int l,int r,int ll,int rr)
{
	if(t[v].hl==l&&t[v].hr==r)
	return query_subtmax(v,1,ll,rr);
	
	int mid=(t[v].hl+t[v].hr)>>1;
	if(r<=mid)
	return querymax(v<<1,l,r,ll,rr);
	else if(l>mid)
	return querymax(v<<1|1,l,r,ll,rr);
	else 
	return max(querymax(v<<1,l,mid,ll,rr),querymax(v<<1|1,mid+1,r,ll,rr));
}


int query_subtmin(int v,int rt,int l,int r)
{
	if(t[v].subt[rt].L==l&&t[v].subt[rt].R==r)
	return t[v].subt[rt].vmin;
	int mid=(t[v].subt[rt].L+t[v].subt[rt].R)>>1;
	if(r<=mid)
	 return query_subtmin(v,rt<<1,l,r);
	else if(l>mid)
	return query_subtmin(v,rt<<1|1,l,r);
	else
	return min(query_subtmin(v,rt<<1,l,mid),query_subtmin(v,rt<<1|1,mid+1,r));
	 
}

int querymin(int v,int l,int r,int ll,int rr)
{
	if(t[v].hl==l&&t[v].hr==r)
	return query_subtmin(v,1,ll,rr);
	
	int mid=(t[v].hl+t[v].hr)>>1;
	if(r<=mid)
	return querymin(v<<1,l,r,ll,rr);
	else if(l>mid)
	return querymin(v<<1|1,l,r,ll,rr);
	else 
	return min(querymin(v<<1,l,mid,ll,rr),querymin(v<<1|1,mid+1,r,ll,rr));
}
int main()
{
	int T,ca=1;
	scanf("%d",&T);
	while(T--)
	{
	  int n;
	  scanf("%d",&n);
	  build(1,1,n,1,n);  
	  for(int i=1;i<=n;i++)
	   for(int j=1;j<=n;j++)
	   {
	   	int v;
	   	scanf("%d",&v);
		update(1,v,i,j);
	   }
	   int Q;
	   scanf("%d",&Q);
	   printf("Case #%d:\n",ca++);
	   while(Q--)
	   {
	   	int xi,yi,Li;
	   	scanf("%d%d%d",&xi,&yi,&Li);
         int x1 = max(xi - Li/2,1);
         int x2 = min(xi + Li/2,n);
         int y1 = max(yi - Li/2,1);
         int y2 = min(yi + Li/2,n);
         if(x1>x2)
         swap(x1,x2);
         if(y1>y2)
         swap(y1,y2);
		 int Max = querymax(1,x1,x2,y1,y2);
         int Min = querymin(1,x1,x2,y1,y2);
         int t = (Max+Min)/2;
         printf("%d\n",t);
         update(1,t,xi,yi);
	   }
	}
	return 0;
}

匡冰大神版本,大神就是大神: 点击打开链接
#include<cstdio>
#include<queue>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
#define inf 0x7ffffff
#define MAXN 1010
int n;
struct nodey
{
	int ly;
	int ry;
	int vmax;
	int vmin;
};
int locate_y[MAXN],locate_x[MAXN];
struct nodex
{
	int lx,rx;
	nodey sty[MAXN*4];
	void build(int l,int r,int v)
	{
		sty[v].ly=l;
		sty[v].ry=r;
		sty[v].vmax=-inf;
		sty[v].vmin=inf;
		if(l==r)
		{
		 locate_y[l]=v;
		 return ;	
		}	
	    int mid=(l+r)>>1;
    	build(l,mid,v<<1);
	    build(mid+1,r,v<<1|1);
	}
   
   int querymin(int l,int r,int v)
   {
   	if(sty[v].ly==l&&sty[v].ry==r)
   	return sty[v].vmin;
   	
   	int mid=(sty[v].ly+sty[v].ry)>>1;
   	if(r<=mid)
   	return querymin(l,r,v<<1);
   	else if(l>mid)
   	return querymin(l,r,v<<1|1);
   	else
   	return min(querymin(l,mid,v<<1),querymin(mid+1,r,v<<1|1));
   }
   
   int querymax(int l,int r,int v)
   {
   	if(sty[v].ly==l&&sty[v].ry==r)
   	return sty[v].vmax;
   	
   	int mid=(sty[v].ly+sty[v].ry)>>1;
   	if(r<=mid)
   	return querymax(l,r,v<<1);
   	else if(l>mid)
   	return querymax(l,r,v<<1|1);
   	else
   	return max(querymax(l,mid,v<<1),querymax(mid+1,r,v<<1|1));
   }	
}stx[MAXN*4];

void build(int l,int r,int v)
{
	stx[v].lx=l;
	stx[v].rx=r;
	stx[v].build(1,n,1);
	if(l==r)
	{
		locate_x[l]=v;
		return ;
	}
	int mid=(l+r)>>1;
	build(l,mid,v<<1);
	build(mid+1,r,v<<1|1);
}

void update(int x,int y,int va)
{
	int tx=locate_x[x];
	int ty=locate_y[y];
	stx[tx].sty[ty].vmin=stx[tx].sty[ty].vmax=va;
	for(int i=tx;i;i>>=1)
	  for(int j=ty;j;j>>=1)
	  {
	  	if(i==tx&&j==ty)
	  	continue;
	  	if(j==ty)
	  	{
	  	  stx[i].sty[j].vmin=min(stx[i<<1].sty[j].vmin,stx[i<<1|1].sty[j].vmin);
		  stx[i].sty[j].vmax=max(stx[i<<1].sty[j].vmax,stx[i<<1|1].sty[j].vmax);	
		}
		else
		{
	  	  stx[i].sty[j].vmin=min(stx[i].sty[j<<1].vmin,stx[i].sty[j<<1|1].vmin);
		  stx[i].sty[j].vmax=max(stx[i].sty[j<<1].vmax,stx[i].sty[j<<1|1].vmax);	
		}
	  }
}

int querymin(int x1,int x2,int y1,int y2,int v)
{
	if(stx[v].lx==x1&&stx[v].rx==x2)
	return stx[v].querymin(y1,y2,1);
	int mid=(stx[v].lx+stx[v].rx)>>1;
	if(x2<=mid)
	return querymin(x1,x2,y1,y2,v<<1);
	else if(x1>mid)
	return querymin(x1,x2,y1,y2,v<<1|1);
	else
	return min(querymin(x1,mid,y1,y2,v<<1),querymin(mid+1,x2,y1,y2,v<<1|1));
}

int querymax(int x1,int x2,int y1,int y2,int v)
{
	if(stx[v].lx==x1&&stx[v].rx==x2)
	return stx[v].querymax(y1,y2,1);
	int mid=(stx[v].lx+stx[v].rx)>>1;
	if(x2<=mid)
	return querymax(x1,x2,y1,y2,v<<1);
	else if(x1>mid)
	return querymax(x1,x2,y1,y2,v<<1|1);
	else
	return max(querymax(x1,mid,y1,y2,v<<1),querymax(mid+1,x2,y1,y2,v<<1|1));
}

int main()
{
 int T,ca=1;
 scanf("%d",&T);
 while(T--)
 {
 	scanf("%d",&n);
 	build(1,n,1);
 	for(int i=1;i<=n;i++)
 	 for(int j=1;j<=n;j++)
 	 {
 	   int v;
	   scanf("%d",&v);
	   update(i,j,v);	
	 }
	 int Q;
	 scanf("%d",&Q);
	 printf("Case #%d:\n",ca++);
	 while(Q--)
	 {
	 	int xi,yi,Li;
	 	scanf("%d%d%d",&xi,&yi,&Li);
	 	int x1=max(xi-Li/2,1);
	 	int x2=min(xi+Li/2,n);
	 	int y1=max(yi-Li/2,1);
	 	int y2=min(yi+Li/2,n);
	 	int ret_max=querymax(x1,x2,y1,y2,1);
	 	int ret_min=querymin(x1,x2,y1,y2,1);
	 	int ans=(ret_max+ret_min)>>1;
	 	printf("%d\n",ans);
	 	update(xi,yi,ans);
	 }
 }
 return 0;	
} 






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值