kmeans是无监督的聚类算法,可用于数据的分类。本文尝试用kmeans对车牌类型进行分类,记录使用过程中的注意点。
kmeans使用过程中涉及两个大部分,模型与分析。模型部分包括训练模型和使用模型,分析部分主要为可视化分析。两部分的主要流程如下。
训练与使用

数据可视化

下面对主要的部分进行解释和代码说明
一、数据集与预处理
使用车牌数据,车牌数据为rgb图片数据,共7种类型的车牌500张。主要想从颜色上进行区分,所以数据不进行灰度化,而是提取了r分量与g分量的比值做为输入。同时图片需要展开成一维数据送入kmeans的接口
img = img.convert('RGB')
r, g, b = img.split()
r_array = np.array(r).flatten().astype(float)#0.592
g_array = np.array(g).flatten().astype(float)#0.436
b_array = np.array(b).flatten().astype(float)#0.554
img_array = r_array/g_array#0.816
二、kmeans参数配置
定义了7分类,将随机数从0-79进行尝试

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



