【机器学习随笔】基于kmeans的车牌类型分类注意点

kmeans是无监督的聚类算法,可用于数据的分类。本文尝试用kmeans对车牌类型进行分类,记录使用过程中的注意点。
kmeans使用过程中涉及两个大部分,模型与分析。模型部分包括训练模型和使用模型,分析部分主要为可视化分析。两部分的主要流程如下。

训练与使用

训练模型与使用模型
数据可视化
数据分布的可视化展示
下面对主要的部分进行解释和代码说明
一、数据集与预处理
使用车牌数据,车牌数据为rgb图片数据,共7种类型的车牌500张。主要想从颜色上进行区分,所以数据不进行灰度化,而是提取了r分量与g分量的比值做为输入。同时图片需要展开成一维数据送入kmeans的接口

img = img.convert('RGB')
r, g, b = img.split()
r_array = np.array(r).flatten().astype(float)#0.592
g_array = np.array(g).flatten().astype(float)#0.436
b_array = np.array(b).flatten().astype(float)#0.554
img_array = r_array/g_array#0.816

二、kmeans参数配置
定义了7分类,将随机数从0-79进行尝试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉木渡香

感谢鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值