//题目参数 n,x,y
//f(n)=x*f(n-1)+y*f(n-2)
//s(n)=sum(f(i)^2) 0<=i<=n
//分解得到
//f(n)^2=(x^2*f(n-1)^2+y^2*f(n-2)^2+2xy*f(n-1)*f(n-2));
//s(n)=s(n-1)+f(n)^2;
//
//因为要求sn 我们构造矩阵[s(n-1),f(n)^2,f(n-1)^2,f(n)*f(n-1)]
//观察如何能够得到矩阵[s(n),f(n+1)^2,f(n)^2,f(n+1)*f(n)]
//很显然利用矩阵乘法,构造矩阵
//[ [ 1 0 0 0 ]
// [ 1 x^2 1 x ]
// [ 0 y^2 0 0 ]
// [ 0 2xy 0 y ] ];
//因为 f(n+1)*f(n)=x*f(n)^2+y*f(n)*f(n-1);
// f(n+1)^2=x^2*f(n)^2+y^2*f(n-1)^2+2xy*f(n)*f(n-1);
推公式的方法详见该博客,讲的十分清晰 :http://blog.youkuaiyun.com/abcjennifer/article/details/5302198
//题目参数 n,x,y
//f(n)=x*f(n-1)+y*f(n-2)
//s(n)=sum(f(i)^2) 0<=i<=n
//分解得到
//f(n)^2=(x^2*f(n-1)^2+y^2*f(n-2)^2+2xy*f(n-1)*f(n-2));
//s(n)=s(n-1)+f(n)^2;
//
//因为要求sn 我们构造矩阵[s(n-1),f(n)^2,f(n-1)^2,f(n)*f(n-1)]
//观察如何能够得到矩阵[s(n),f(n+1)^2,f(n)^2,f(n+1)*f(n)]
//很显然利用矩阵乘法,构造矩阵
//[ [ 1 0 0 0 ]
// [ 1 x^2 1 x ]
// [ 0 y^2 0 0 ]
// [ 0 2xy 0 y ] ];
//因为 f(n+1)*f(n)=x*f(n)^2+y*f(n)*f(n-1);
// f(n+1)^2=x^2*f(n)^2+y^2*f(n-1)^2+2xy*f(n)*f(n-1);
Another kind of Fibonacci
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1155 Accepted Submission(s): 437
Problem Description
As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)
2 +A(1)
2+……+A(n)
2.
Input
There are several test cases.
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 2 31 – 1
X : 2<= X <= 2 31– 1
Y : 2<= Y <= 2 31 – 1
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 2 31 – 1
X : 2<= X <= 2 31– 1
Y : 2<= Y <= 2 31 – 1
Output
For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.
Sample Input
2 1 1 3 2 3
Sample Output
6 196
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
#define MAXN 5
struct Matrix
{
int size;
long modulo;
long element[MAXN][MAXN];
void setSize(int);
void setModulo(long);
};
int n,x,y;
Matrix a,an;
void Matrix::setSize(int a)
{
for (int i=0; i<a; i++)
for (int j=0; j<a; j++)
element[i][j]=0;
size=a;
}
void Matrix::setModulo(long a)
{
modulo = a;
}
Matrix multi(Matrix p1,Matrix p2)
{
Matrix p;
p.setSize(p1.size);
p.setModulo(p1.modulo);
for (int i=0; i<p1.size; i++)
for (int j=0; j<p1.size; j++)
for (int k=0; k<p1.size; k++)
{
p.element[i][j]+=p1.element[i][k]*p2.element[k][j];
p.element[i][j]%=p1.modulo;
}
return p;
}
Matrix power(Matrix p,long exp)
{
Matrix res,A;
A=p;
res.setModulo(p.modulo);
res.setSize(p.size);
for(int i=0;i<p.size;i++)
res.element[i][i]=1;
while(exp)
{
if(exp&1)
res=multi(res,A);
exp>>=1;
A=multi(A,A);
}
return res;
}
void init()
{
a.setSize(4);
a.setModulo(10007);
a.element[0][0]=a.element[1][0]=a.element[1][2]=1;
a.element[1][1]=x*x%10007;
a.element[2][1]=y*y%10007;
a.element[3][1]=2*x*y%10007;
a.element[1][3]=x;
a.element[3][3]=y;
}
int main()
{
int s0[]={1,1,1,1};
while(~scanf("%ld%ld%ld",&n,&x,&y))
{
x%=10007;
y%=10007;
init();
an=power(a,n);
long tmp=0;
for(int j=0;j<4;j++)
tmp+=(an.element[j][0]*s0[j]);
tmp=tmp%10007;
printf("%ld\n",tmp);
}
return 0;
}