逆元详解
1.扩展欧几里得
给定模数m,求a的逆相当于求解ax=1(mod m)
这个方程可以转化为ax-my=1
然后套用求二元一次方程的方法,用扩展欧几里得算法求得一组x0,y0和gcd
检查gcd是否为1
gcd不为1则说明逆元不存在
若为1,则调整x0到0~m-1的范围中即可
PS:这种算法效率较高,常数较小,时间复杂度为O(ln n)
[cpp]view plaincopy
typedef long long ll;
void extgcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){ d=a; x=1; y=0;}
else{ extgcd(b,a%b,d,y,x); y-=x*(a/b); }
}
ll inverse(ll a,ll n){
ll d,x,y;
extgcd(a,n,d,x,y);
return d==1?(x+n)%n:-1;
}
2.费马小定理
在模为素数p的情况下,有费马小定理 a^(p-1)=1(mod p) 那么a^(p-2)=a^-1(mod p) 也就是说a的逆元为a^(p-2)
而在模不为素数p的情况下,有欧拉定理 a^phi(m)=1(mod m) (a⊥m) 同理a^-1=a^(phi(m)-1)
因此逆元x便可以套用快速幂求得了x=a^(phi(m)-1)
但是似乎还有个问题?如何判断a是否有逆元呢?
检验逆元的性质,看求出的幂值x与a相乘是否为1即可
PS:这种算法复杂度为O(log2 n) ,在几次测试中,常数似乎较上种方法大
当p比较大时,需要快速幂求解
[cpp]view plaincopy
typedef long long ll;
ll pow_mod(ll x, ll n, ll mod){
ll res=1;
while(n>0){
if(n&1)res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
3.特殊情况
4.逆元打表
有时会遇到这样一种问题,在模质数p下,求1~n逆元 n< p(这里为奇质数)。可以O(n)求出所有逆元,有一个递推式如下
它的推导过程如下,设,那么
对上式两边同时除,进一步得到
再把和替换掉,最终得到
初始化,这样就可以通过递推法求出1->n模奇素数的所有逆元了。
另外有个结论模的所有逆元值对应中所有的数,比如,那么对应的逆元是。
[cpp]view plaincopy
typedef long long ll;
const int N = 1e5 + 5;
int inv[N];
void inverse(int n, int p) {
inv[1] = 1;
for (int i=2; i<=n; ++i) {
inv[i] = (ll) (p - p / i) * inv[p%i] % p;
}
}
逆元是一个很重要的概念, 对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。
逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为。
继续学习练习:
http://blog.youkuaiyun.com/acdreamers/article/details/8220787