maskrcnn_benchmark 代码详解之 roi_box_predictors.py

本文深入解析maskrcnn_benchmark库中的roi_box_predictors.py,探讨如何对RPN提出的边框进行类别和位置大小预测。文件主要实现直接预测和池化后预测两种方法。

前言:

      在对RPN预测到的边框进行进一步特征提取后,需要对边框进行预测,得到边框的类别和位置大小信息。这一操作在maskrcnn_benchmark中由roi_box_predictors.py完成,该文件实现了两种预测类:直接进行预测以及先池化再预测。其代码详解如下:

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from maskrcnn_benchmark.modeling import registry
from torch import nn


# todo 现将预测边框的特征进行池化,再使用边框预测结构和边框回归结构来预测边框的类别以及边框的坐标偏差值
@registry.ROI_BOX_PREDICTOR.register("FastRCNNPredictor")
class FastRCNNPredictor(nn.Module):
    def __init__(self, config, in_channels):
        super(FastRCNNPredictor, self).__init__()
        # 当输入层的通道为空时报错
        assert in_channels is not None
        # 输入层的通道数
        num_inputs = in_channels
        # 得到基准边框的类别数,一般都要加上一类为背景
        num_classes = config.MODEL.ROI_BOX_HEAD.NUM_CLASSES
        # 对输入层特征先进行池化
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        # 创建用于预测边框类别的网络结构:线性链接层,类别数×输入层通道数
        self.cls_score = nn.Linear(num_inputs, num_classes)
 
Traceback (most recent call last): File "tools/extract_clip_feature.py", line 20, in <module> from maskrcnn_benchmark.data import make_data_loader File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/data/__init__.py", line 2, in <module> from .build import make_data_loader, get_dataset_statistics File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/data/build.py", line 12, in <module> from maskrcnn_benchmark.utils.miscellaneous import save_labels File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/utils/miscellaneous.py", line 10, in <module> from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/structures/boxlist_ops.py", line 7, in <module> from maskrcnn_benchmark.layers import nms as _box_nms File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/layers/__init__.py", line 10, in <module> from .nms import nms File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/layers/nms.py", line 3, in <module> from ._utils import _C File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/layers/_utils.py", line 39, in <module> _C = _load_C_extensions() File "/root/.cache/huggingface/forget/lab/shichong/cyy/RECODE/maskrcnn_benchmark/layers/_utils.py", line 35, in _load_C_extensions extra_include_paths=extra_include_paths, File "/opt/conda/envs/recode/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 1296, in load keep_intermediates=keep_intermediates) File "/opt/conda/envs/recode/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 1534, in _jit_compile return _import_module_from_library(name, build_directory, is_python_module) File "/opt/conda/envs/recode/lib/python3.7/site-packages/torch/utils/cpp_extension.py", line 1936, in _import_module_from_library module = importlib.util.module_from_spec(spec) ImportError: /root/.cache/torch_extensions/py37_cu117/torchvision/torchvision.so: cannot open shared object file: No such file or directory
最新发布
06-24
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值