Mask R-CNN Benchmark 项目教程
1. 项目的目录结构及介绍
Mask R-CNN Benchmark 是一个基于 PyTorch 的快速、可扩展的实例分割和目标检测框架。项目的目录结构如下:
maskrcnn_benchmark
|—— tools
| |—— train_net.py
| |—— test_net.py
|—— maskrcnn_benchmark
| |—— config
| |—— engine
| |—— modeling
| |—— solver
| |—— structures
| |—— utils
|—— setup.py
|—— README.md
目录介绍
- tools: 包含训练和测试网络的脚本文件
train_net.py和test_net.py。 - maskrcnn_benchmark: 核心代码目录,包含配置、模型定义、训练引擎、优化器、数据结构和工具函数等。
- config: 配置文件目录,包含模型的各种配置选项。
- engine: 训练和评估的引擎代码。
- modeling: 模型定义代码,包括各种网络层的实现。
- solver: 优化器和学习率调度器的实现。
- structures: 数据结构定义,如边界框和掩码。
- utils: 各种工具函数。
- setup.py: 项目安装脚本。
- README.md: 项目说明文档。
2. 项目的启动文件介绍
项目的启动文件主要包括 train_net.py 和 test_net.py,这两个文件分别用于训练和测试模型。
train_net.py
train_net.py 是用于训练模型的脚本。它主要完成以下任务:
- 读取配置文件。
- 构建模型。
- 设置优化器和学习率调度器。
- 加载数据集。
- 进行模型训练。
test_net.py
test_net.py 是用于测试模型的脚本。它主要完成以下任务:
- 读取配置文件。
- 构建模型。
- 加载预训练的模型权重。
- 加载数据集。
- 进行模型测试和评估。
3. 项目的配置文件介绍
配置文件位于 maskrcnn_benchmark/config 目录下,主要包含模型的各种配置选项。配置文件通常是一个 YAML 文件,定义了模型的超参数、数据集路径、训练参数等。
配置文件示例
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: "R-50-FPN"
RPN:
USE_FPN: True
ROI_HEADS:
USE_FPN: True
ROI_BOX_HEAD:
POOLER_RESOLUTION: 7
POOLER_SCALES: [0.25, 0.125, 0.0625, 0.03125]
POOLER_TYPE: "ROIAlignV2"
ROI_MASK_HEAD:
POOLER_RESOLUTION: 14
POOLER_SCALES: [0.25, 0.125, 0.0625, 0.03125]
POOLER_TYPE: "ROIAlignV2"
DATASETS:
TRAIN: ("coco_2017_train",)
TEST: ("coco_2017_val",)
SOLVER:
BASE_LR: 0.001
MAX_ITER: 90000
STEPS: (60000, 80000)
IMS_PER_BATCH: 16
TEST:
IMS_PER_BATCH: 8
OUTPUT_DIR: "./output"
配置文件说明
- MODEL: 定义模型的架构和组件。
- DATASETS: 定义训练和测试的数据集。
- SOLVER: 定义优化器的参数和训练迭代次数。
- TEST: 定义测试时的参数。
- OUTPUT_DIR: 定义输出目录,用于保存训练结果。
通过配置文件
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考



