90%程序员无法正确实现二分查找

本文详细介绍了经典的二分查找算法,并提供了一个具体的实现案例。通过对算法的深入解析,指出容易出现错误的地方,帮助读者更好地理解和掌握二分查找。

最近在csdn上面看到有关实现二分查找的编程题目。本文针对这个题目给出自己的解答。

具体题目描述为:“我很惊讶:在足够的时间内,只有大约10%的专业程序员可以把这个小程序写对。但写不对这个小程序的还不止这些人:高德纳在《计算机程序设计的艺术 第3卷 排序和查找》第6.2.1节的“历史与参考文献”部分指出,虽然早在1946年就有人将二分查找的方法公诸于世,但直到1962年才有人写出没有bug的二分查找程序。 ”——乔恩·本特利,《编程珠玑(第1版)》第35-36页。 请实现二分查找,完成函数: int binary_search(int array[],int n,int value) n:数组大小 value:要查找的数值 return:找到了,返回找到的数的下标(存在重复元素时,返回最小的下标),没找到,返回-1 。

程序实现:

	 public static int binary_search(int[] array,int n,int value){
            int low=0;
            int hight=n-1;
            while(low<=hight){
                int middle = (low + hight) / 2;
		//查找到数据的位置,判断是否是重复元素,如果是找最小的下标。
                if(array[middle]==value){
                    bool flag = true;
                    while ((low <= middle)&&flag)
                    {
                        if (array[low] == value)
                        {
                            flag = false;
                        }
                        else
                        {
                            flag = true;
                            low++;
                        }
                    }
                    return low; 
                }
                else if(array[middle]>value){
                    hight = middle-1;
                }
                else if(array[middle]<value){
                    low = middle+1;
                }
            }
            return -1;
        }


说明:1、二分法是编程中非常常见的一种编程方法,他的具体思路是对需要计算数组设置low,height这两个起始点与最终点。根据这两个点确定中点,因为数据有序的,每次查找只要与low,middle,height这三个点的比较就可以了。这个算法时间复杂将减少一半。

2、在上述计算式height,low的变化应选择height=middle-1,low=middle+1。如果选择height=middle,将可能发生最后一个数字无法找到,进入死循环。例如数字{ -1, 1, 1, 3, 4, 5 }就无法找到最后一个数字5.

内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究内容概要:本文围绕“Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究”展开,提出了一种结合改进粒子群优化算法(IPSO)与长短期记忆网络(LSTM)的混合预测模型。通过IPSO算法优化LSTM网络的关键参数(如学习率、隐层节点数等),有效提升了模型在短期电力负荷预测中的精度与收敛速度。文中详细阐述了IPSO算法的改进策略(如引入自适应惯性权重、变异机制等),增强了全局搜索能力与避免早熟收敛,并利用实际电力负荷数据进行实验验证,结果表明该IPSO-LSTM模型相较于传统LSTM、PSO-LSTM等方法在预测准确性(如MAE、RMSE指标)方面表现更优。研究为电力系统调度、能源管理提供了高精度的负荷预测技术支持。; 适合群:具备一定Python编程基础、熟悉基本机器学习算法的高校研究生、科研员及电力系统相关领域的技术员,尤其适合从事负荷预测、智能优化算法应用研究的专业士。; 使用场景及目标:①应用于短期电力负荷预测,提升电网调度的精确性与稳定性;②为优化算法(如粒子群算法)与深度学习模型(如LSTM)的融合应用提供实践案例;③可用于学术研究、毕业论文复现或电力企业智能化改造的技术参考。; 阅读建议:建议读者结合文中提到的IPSO与LSTM原理进行理论学习,重点关注参数优化机制的设计思路,并动手复现实验部分,通过对比不同模型的预测结果加深理解。同时可拓展尝试将该方法应用于其他时序预测场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值