BOOST电路2
2023年1月12日 nige in Tongji University
#elecEngeneer
上链
文章目录
6. CCM非理想能量守恒平均分析
考虑开关管的导通电阻
R
S
R_{S}
RS 、二极管器件的导通压降
V
F
V_{F}
VF 和等效平均电阻电阻
R
F
R_F
RF、电感电容等效串联电阻
R
L
R_L
RL、
R
C
R_C
RC
非理想BOOST电路
电感电压:
{
v
L
=
V
i
−
I
i
(
R
L
+
R
S
)
,
开关
S
导通
v
L
=
V
i
−
I
i
(
R
L
+
R
F
)
−
V
F
−
V
o
,
开关
S
关闭
\begin{cases} v_L=V_i-I_i(R_L+R_S) & \ , 开关S导通 \\[3ex] v_L= V_i-I_i(R_L+R_F)-V_F-V_o & \ , 开关S关闭 \end{cases}
⎩
⎨
⎧vL=Vi−Ii(RL+RS)vL=Vi−Ii(RL+RF)−VF−Vo ,开关S导通 ,开关S关闭
电感秒伏平衡
D
⋅
[
V
i
−
I
i
(
R
L
+
R
S
)
]
=
−
(
1
−
D
)
⋅
[
V
i
−
I
i
(
R
L
+
R
F
)
−
V
F
−
V
o
]
D\cdot[V_i-I_i(R_L+R_S)]=-(1-D)\cdot[V_i-I_i(R_L+R_F)-V_F-V_o]
D⋅[Vi−Ii(RL+RS)]=−(1−D)⋅[Vi−Ii(RL+RF)−VF−Vo]
I
i
=
⟨
i
L
⟩
=
I
L
I_i=\langle i_L\rangle=I_L
Ii=⟨iL⟩=IL
解得
D
=
V
o
+
V
F
−
V
i
+
I
L
(
R
L
+
R
F
)
V
o
+
V
F
+
I
L
(
R
F
−
R
S
)
(33)
D=\frac{V_o+V_F-V_i+I_L(R_L+R_F)}{V_o+V_F+I_L(R_F-R_S)}\tag{33}
D=Vo+VF+IL(RF−RS)Vo+VF−Vi+IL(RL+RF)(33)
观察开关网络部分,得到电流关系
⟨
i
L
⟩
=
⟨
i
S
⟩
D
=
⟨
i
D
i
o
d
e
⟩
1
−
D
\langle i_L\rangle=\frac{\langle i_S\rangle}{D}=\frac{\langle i_{Diode}\rangle}{1-D}
⟨iL⟩=D⟨iS⟩=1−D⟨iDiode⟩
⟨
i
D
i
o
d
e
⟩
=
I
R
\langle i_{Diode}\rangle=I_R
⟨iDiode⟩=IR
s
o
I
L
=
1
(
1
−
D
)
I
R
=
1
(
1
−
D
)
V
o
R
=
I
i
so \ \ \ I_L=\frac1{(1-D)}I_R=\frac1{(1-D)}\frac{V_o}{R}=I_i
so IL=(1−D)1IR=(1−D)1RVo=Ii
和理想时一样
代入式(33)有:
V
o
=
[
V
i
−
(
1
−
D
)
V
F
]
1
−
D
⋅
(
1
−
D
)
2
R
(
1
−
D
)
2
R
+
R
L
+
D
R
S
+
(
1
−
D
)
R
F
(34)
V_o=\frac{[ \ V_i-(1-D)V_F \ ]}{1-D}\cdot\frac{(1-D)^2R}{(1-D)^2R+R_L+DR_S+(1-D)R_F}\tag{34}
Vo=1−D[ Vi−(1−D)VF ]⋅(1−D)2R+RL+DRS+(1−D)RF(1−D)2R(34)
由于开关网络上开关管永远流过电感在
(
0
,
D
T
s
)
(0, \ DT_s)
(0, DTs) 内的电流,二极管流过电感在
(
D
T
s
,
T
s
)
(DT_s, \ T_s)
(DTs, Ts) 内的电流
所以 BUCK 和 BOOST 开关网络的电流关系相同,能量守恒平均得到的等效电阻也相同
R
S
′
=
R
S
D
(35)
R_S'=\frac{R_S}{D}\tag{35}
RS′=DRS(35)
R
F
′
=
R
F
1
−
D
(36)
R_F'=\frac{R_F}{1-D}\tag{36}
RF′=1−DRF(36)
效率
η
=
P
o
u
t
P
i
n
=
I
R
V
o
I
i
V
i
=
(
1
−
D
)
V
o
V
i
=
V
i
−
(
1
−
D
)
V
F
V
i
⋅
(
1
−
D
)
2
R
(
1
−
D
)
2
R
+
R
L
+
D
R
S
+
(
1
−
D
)
R
F
=
1
1
+
R
E
R
(
1
−
D
)
2
+
V
F
V
o
(37)
\begin{align*} \eta=\frac{P_{out}}{P_{in}}=\frac{I_RV_o}{I_iV_i}&=\frac{(1-D)V_o}{V_i}\\ \\ &=\frac{V_i-(1-D)V_{F}}{V_i}\cdot\frac{(1-D)^2R}{(1-D)^2R+R_L+DR_S+(1-D)R_F}\\ \\ &=\frac{1}{1+\frac{ R_E }{ R (1-D)^2}+\frac{ V_F }{ V_o }} \end{align*} \tag{37}
η=PinPout=IiViIRVo=Vi(1−D)Vo=ViVi−(1−D)VF⋅(1−D)2R+RL+DRS+(1−D)RF(1−D)2R=1+R(1−D)2RE+VoVF1(37)
显然效率要高则
R
E
R_E
RE,
V
F
V_F
VF 要尽量小,其中
R
E
=
R
L
+
D
R
S
+
(
1
−
D
)
R
F
(38)
R_E=R_L+DR_S+(1-D)R_F\tag{38}
RE=RL+DRS+(1−D)RF(38)
模仿CCM下的理想稳态分析可得到纹波的计算公式
Δ
i
L
=
[
V
i
−
I
i
(
R
L
+
R
S
)
]
D
T
s
L
(39)
\Delta i_L=\frac{[V_i-I_i(R_L+R_S)]DT_s}{L}\tag{39}
ΔiL=L[Vi−Ii(RL+RS)]DTs(39)
若电容提前放电,设提前放电时间为
D
T
s
+
k
(
1
−
D
)
T
s
DT_s+k(1-D)T_s
DTs+k(1−D)Ts 则
k
=
I
L
m
a
x
−
I
o
Δ
i
L
=
I
L
+
0.5
Δ
i
L
−
I
o
Δ
i
L
k=\frac{I_{Lmax}-I_o}{\Delta i_L}=\frac{I_L+0.5\Delta i_L-I_o}{\Delta i_L}
k=ΔiLILmax−Io=ΔiLIL+0.5ΔiL−Io
滤波电容的有效电流比较难算,所以先不算滤波电容功率损耗了
6.1 CCM非理想大信号平均模型
由式(35、36)可得 CCM非理想大信号平均模型
6.2 CCM等效大信号平均模型
观察式(34,38),由分压公式
开关网络相当一个直流变压器
将
V
F
V_F
VF 等效至电感前,可得CCM等效大信号平均模型
6.3 CCM的DC电路模型
电容支路看作开路,电感看作短路,得到DC电路模型
6.4 CCM的小信号线性电路模型
对于BOOST电路的开关网络部分,在动态情况下,占空比输入可能存在微小扰动,所以三端开关网络的输入、输出部分也存在微小扰动
即
v
a
p
=
V
a
p
+
v
^
a
p
v_{ap}=V_{ap}+\hat v_{ap}
vap=Vap+v^ap,
i
a
=
I
a
+
i
^
a
i_{a}=I_{a}+\hat i_{a}
ia=Ia+i^a,
i
c
=
I
c
+
i
^
c
i_{c}=I_{c}+\hat i_{c}
ic=Ic+i^c
令含扰动的占空比为
d
=
D
+
d
^
d=D+\hat d
d=D+d^
理想变比关系有
i
p
=
(
1
−
d
)
i
c
=
(
1
−
D
−
d
^
)
(
I
c
+
i
^
c
)
=
I
c
+
i
^
c
−
D
I
c
−
D
i
^
c
−
d
^
I
c
−
d
^
i
^
c
v
a
c
=
(
1
−
d
)
v
a
p
=
(
1
−
D
−
d
^
)
(
V
a
p
+
v
^
a
p
)
=
V
a
p
+
v
^
a
p
−
D
V
a
p
−
D
v
^
a
p
−
d
^
V
a
p
−
d
^
v
^
a
p
\begin{align*} i_p=(1-d)i_c=(1-D-\hat d)(I_{c}+\hat i_{c})&=I_c+\hat i_c-DI_c-D\hat i_c-\hat dI_c-\hat d \ \hat i_c \\ \\ v_{ac}=(1-d)v_{ap}=(1-D-\hat d)(V_{ap}+\hat v_{ap})&=V_{ap}+\hat v_{ap}-DV_{ap}-D\hat v_{ap} -\hat d V_{ap}-\hat d \ \hat v_{ap} \end{align*}
ip=(1−d)ic=(1−D−d^)(Ic+i^c)vac=(1−d)vap=(1−D−d^)(Vap+v^ap)=Ic+i^c−DIc−Di^c−d^Ic−d^ i^c=Vap+v^ap−DVap−Dv^ap−d^Vap−d^ v^ap
若扰动量远远小于平均值,则去掉小量乘积(高阶小量),线性化得到
i
p
=
(
1
−
D
−
d
^
)
(
I
c
+
i
^
c
)
=
(
1
−
D
)
(
I
c
+
i
^
c
)
−
d
^
I
c
v
c
a
=
−
(
1
−
D
−
d
^
)
(
V
a
p
+
v
^
a
p
)
=
(
1
−
D
)
(
V
p
a
+
v
^
p
a
)
−
d
^
V
p
a
\begin{align*} i_p=(1-D-\hat d)(I_{c}+\hat i_{c})&=(1-D)(I_c+\hat i_c)-\hat dI_c \tag{40} \\ \\ v_{ca}=-(1-D-\hat d)(V_{ap}+\hat v_{ap})&=(1-D)(V_{pa}+\hat v_{pa})-\hat d V_{pa} \tag{41} \end{align*}
ip=(1−D−d^)(Ic+i^c)vca=−(1−D−d^)(Vap+v^ap)=(1−D)(Ic+i^c)−d^Ic=(1−D)(Vpa+v^pa)−d^Vpa(40)(41)
根据上两式可以得到BOOST开关网络在CCM下的小信号等效电路模型
从而得到非理想的CCM小信号线性电路模型,其中去掉了直流部分。
注意输入量是小量,注意电压符号,反过来了
其中
i
^
L
=
I
c
+
i
^
c
\hat i_L=I_c+\hat i_c
i^L=Ic+i^c
i
p
=
i
^
o
=
(
1
−
D
)
(
I
c
+
i
^
c
)
−
d
^
I
c
=
(
1
−
D
)
i
^
L
−
d
^
I
L
i_p=\hat i_o=(1-D)(I_c+\hat i_c)-\hat dI_c=(1-D)\hat i_L-\hat d I_L
ip=i^o=(1−D)(Ic+i^c)−d^Ic=(1−D)i^L−d^IL
v
^
o
=
V
p
a
+
v
^
p
a
\hat v_o=V_{pa}+\hat v_{pa}
v^o=Vpa+v^pa
v
c
a
=
(
1
−
D
)
(
V
p
a
+
v
^
p
a
)
−
d
^
V
p
a
=
(
1
−
D
)
v
^
o
−
d
^
V
o
v_{ca}=(1-D)(V_{pa}+\hat v_{pa})-\hat dV_{pa}=(1-D)\hat v_o-\hat d V_o
vca=(1−D)(Vpa+v^pa)−d^Vpa=(1−D)v^o−d^Vo
6.5 CCM非理想小信号传递函数
由小信号电路模型可以看出,传递函数由两部分组成,分别为等效直流变压器的两边
用信号与系统中练过的 s域模型分析方法与分压公式可求传递函数
电容:
1
s
C
\frac {1}{sC}
sC1 ,电感:
s
L
sL
sL
6.5.1 求输出对占空比的传递函数
输入看作恒定值,则
v
^
i
=
0
\hat v_i=0
v^i=0,左边回路有
(
1
−
D
)
v
^
o
+
i
^
L
(
R
E
+
s
L
)
−
d
^
V
o
=
0
(1-D)\hat v_o+\hat i_L(R_E+sL)-\hat dV_o=0
(1−D)v^o+i^L(RE+sL)−d^Vo=0
i
^
L
=
d
^
V
o
−
(
1
−
D
)
v
^
o
R
E
+
s
L
\hat i_L=\frac{\hat d V_o-(1-D)\hat v_o}{R_E+sL}
i^L=RE+sLd^Vo−(1−D)v^o
右边回路有
[
(
1
−
D
)
i
^
L
−
I
L
d
^
]
⋅
[
(
R
C
+
1
/
s
C
)
/
/
R
]
=
v
^
o
[(1-D)\hat i_L-I_L\hat d \ ]\cdot[(R_C+1/sC)//R \ ]=\hat v_o
[(1−D)i^L−ILd^ ]⋅[(RC+1/sC)//R ]=v^o
由式(4)有
I
L
=
1
(
1
−
D
)
V
o
R
I_L=\frac1{(1-D)}\frac{V_o}{R}
IL=(1−D)1RVo
联立上式消去
i
^
L
\hat i_L
i^L 有
[
(
1
−
D
)
⋅
d
^
V
o
−
(
1
−
D
)
v
^
o
R
E
+
s
L
−
d
^
V
o
(
1
−
D
)
R
]
⋅
(
s
C
R
C
+
1
)
R
s
C
(
R
C
+
R
)
+
1
=
v
^
o
\Big[ (1-D)\cdot\frac{\hat dV_o-(1-D)\hat v_o}{R_E+sL}-\frac{\hat dV_o}{(1-D)R} \Big]\cdot\frac{(sCR_C+1)R}{sC(R_C+R)+1}=\hat v_o
[(1−D)⋅RE+sLd^Vo−(1−D)v^o−(1−D)Rd^Vo]⋅sC(RC+R)+1(sCRC+1)R=v^o
解得
G
v
d
(
s
)
=
v
^
o
d
^
=
V
o
(
s
C
R
C
+
1
)
[
(
1
−
D
)
R
−
(
R
E
+
s
L
)
/
(
1
−
D
)
]
s
2
L
C
(
R
C
+
R
)
+
s
[
C
R
E
(
R
C
+
R
)
+
(
1
−
D
)
2
C
R
C
R
+
L
]
+
R
E
+
(
1
−
D
)
2
R
(42)
G_{vd}(s)=\frac{\hat v_o}{\hat d}=\frac{V_o(sCR_C+1)\big[(1-D)R-(R_E+sL)/(1-D)\big]} {s^2LC(R_C+R)+s\big[ CR_E(R_C+R)+(1-D)^2CR_CR+L \big]+R_E+(1-D)^2R} \tag{42}
Gvd(s)=d^v^o=s2LC(RC+R)+s[CRE(RC+R)+(1−D)2CRCR+L]+RE+(1−D)2RVo(sCRC+1)[(1−D)R−(RE+sL)/(1−D)](42)
6.5.2 求输出阻抗
令
v
^
i
=
d
^
=
0
\hat v_i=\hat d=0
v^i=d^=0 ,将原边等效电阻等效至副边有
Z
o
(
s
)
=
R
/
/
(
R
C
+
1
/
s
C
)
/
/
(
R
E
+
s
L
)
(
1
−
D
)
2
=
(
1
+
s
C
R
C
)
R
(
s
L
+
R
E
)
s
2
L
C
(
R
C
+
R
)
+
s
[
C
R
E
(
R
C
+
R
)
+
(
1
−
D
)
2
C
R
C
R
+
L
]
+
R
E
+
(
1
−
D
)
2
R
\begin{align*} Z_o(s)&=R//(R_C+1/sC)//\frac{(R_E+sL)}{(1-D)^2} \\ \\ &=\frac{(1+sCR_C)R(sL+R_E)}{s^2LC(R_C+R)+s\big[ CR_E(R_C+R)+(1-D)^2CR_CR+L \big]+R_E+(1-D)^2R}\tag{43} \end{align*}
Zo(s)=R//(RC+1/sC)//(1−D)2(RE+sL)=s2LC(RC+R)+s[CRE(RC+R)+(1−D)2CRCR+L]+RE+(1−D)2R(1+sCRC)R(sL+RE)(43)
与式(42)特征方程一样
6.5.3 求输入阻抗
令
d
^
=
0
\hat d=0
d^=0 ,有
Z
i
(
s
)
=
[
[
R
/
/
(
R
C
+
1
/
s
C
)
]
(
1
−
D
)
2
]
+
(
R
E
+
s
L
)
=
s
2
L
C
(
R
C
+
R
)
+
s
[
C
R
E
(
R
C
+
R
)
+
(
1
−
D
)
2
C
R
C
R
+
L
]
+
R
E
+
(
1
−
D
)
2
R
s
C
(
R
C
+
R
)
+
1
\begin{align*} Z_i(s)&=\Big[\big[R//(R_C+1/sC)\big](1-D)^2\Big] +(R_E+sL)\\ \\ &=\frac{s^2LC(R_C+R)+s\big[ CR_E(R_C+R)+(1-D)^2CR_CR+L \big]+R_E+(1-D)^2R}{sC(R_C+R)+1}\tag{44} \end{align*}
Zi(s)=[[R//(RC+1/sC)](1−D)2]+(RE+sL)=sC(RC+R)+1s2LC(RC+R)+s[CRE(RC+R)+(1−D)2CRCR+L]+RE+(1−D)2R(44)
分母是特征方程
6.5.4 求小信号传递函数
令
d
^
=
0
\hat d=0
d^=0 ,左边回路有
v
^
i
=
i
^
L
(
R
E
+
s
L
)
+
(
1
−
D
)
v
^
o
\hat v_i=\hat i_L(R_E+sL)+(1-D)\hat v_o
v^i=i^L(RE+sL)+(1−D)v^o
右边回路有
(
1
−
D
)
i
^
L
⋅
[
(
R
C
+
1
/
s
C
)
/
/
R
]
=
v
^
o
(1-D)\hat i_L\cdot\big[ (R_C+1/sC)//R \big]=\hat v_o
(1−D)i^L⋅[(RC+1/sC)//R]=v^o
右边回路解出
i
^
L
\hat i_L
i^L 代入左边回路解得
A
(
s
)
=
v
^
o
v
^
i
=
(
1
−
D
)
[
(
R
C
+
1
/
s
C
)
/
/
R
]
R
E
+
s
L
+
(
1
−
D
)
2
[
(
R
C
+
1
/
s
C
)
/
/
R
]
=
(
1
−
D
)
⋅
(
1
+
s
C
R
C
)
R
s
2
L
C
(
R
C
+
R
)
+
s
[
C
R
E
(
R
C
+
R
)
+
(
1
−
D
)
2
C
R
C
R
+
L
]
+
R
E
+
(
1
−
D
)
2
R
\begin{align*} A(s)=\frac{\hat v_o}{\hat v_i} & =\frac{(1-D)\big[ (R_C+1/sC)//R \big]}{R_E+sL+(1-D)^2\big[ (R_C+1/sC)//R \big]} \\ \\ &=\frac{(1-D)\cdot(1+sCR_C)R}{s^2LC(R_C+R)+s\big[ CR_E(R_C+R)+(1-D)^2CR_CR+L \big]+R_E+(1-D)^2R}\tag{45} \end{align*}
A(s)=v^iv^o=RE+sL+(1−D)2[(RC+1/sC)//R](1−D)[(RC+1/sC)//R]=s2LC(RC+R)+s[CRE(RC+R)+(1−D)2CRCR+L]+RE+(1−D)2R(1−D)⋅(1+sCRC)R(45)
7. CCM理想状态空间平均分析
取电感电流与电容电压为状态变量有
S导通:
d
d
t
[
i
L
u
C
]
=
[
0
0
0
−
1
R
C
]
[
i
L
u
C
]
+
[
1
L
0
]
v
i
(46)
\frac d{dt} \begin{bmatrix} i_L \\ u_C \end{bmatrix} =\begin{bmatrix} 0 & 0 \\ 0 & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} i_L \\ u_C \end{bmatrix}+ \begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} v_i\tag{46}
dtd[iLuC]=[000−RC1][iLuC]+[L10]vi(46)
S关闭:
d
d
t
[
i
L
u
C
]
=
[
0
−
1
L
1
C
−
1
R
C
]
[
i
L
u
C
]
+
[
1
L
0
]
v
i
(47)
\frac d{dt} \begin{bmatrix} i_L \\ u_C \end{bmatrix} =\begin{bmatrix} 0 & -\frac 1 L \\ \frac 1 C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} i_L \\ u_C \end{bmatrix}+ \begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} v_i \tag{47}
dtd[iLuC]=[0C1−L1−RC1][iLuC]+[L10]vi(47)
(46)乘 D 加(47)乘(1-D)得大信号状态空间平均模型
d
d
t
[
I
L
V
C
]
=
[
0
−
1
−
D
L
1
−
D
C
−
1
R
C
]
[
I
L
V
C
]
+
[
1
L
0
]
V
i
(48)
\frac d{dt} \begin{bmatrix} I_L \\ V_C \end{bmatrix} =\begin{bmatrix} 0 & -\frac {1-D} L \\ \frac {1-D} C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} I_L \\ V_C \end{bmatrix}+ \begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} V_i \tag{48}
dtd[ILVC]=[0C1−D−L1−D−RC1][ILVC]+[L10]Vi(48)
加入扰动
d
d
t
[
I
L
+
i
^
L
V
C
+
u
^
C
]
=
[
0
−
1
−
D
−
d
^
L
1
−
D
−
d
^
C
−
1
R
C
]
[
I
L
+
i
^
L
V
C
+
u
^
C
]
+
[
1
L
0
]
(
V
i
+
v
^
i
)
\frac d{dt} \begin{bmatrix} I_L+\hat i_L \\ V_C+\hat u_C \end{bmatrix} =\begin{bmatrix} 0 & -\frac {1-D-\hat d} L \\ \frac {1-D-\hat d} C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} I_L+\hat i_L \\ V_C+\hat u_C \end{bmatrix}+ \begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} (V_i+\hat v_i)
dtd[IL+i^LVC+u^C]=[0C1−D−d^−L1−D−d^−RC1][IL+i^LVC+u^C]+[L10](Vi+v^i)
减去式(48),
V
C
=
V
o
V_C=V_o
VC=Vo
d
d
t
[
i
^
L
u
^
C
]
=
[
0
d
^
L
−
d
^
C
0
]
[
I
L
V
o
]
+
[
0
−
1
−
D
−
d
^
L
1
−
D
−
d
^
C
−
1
R
C
]
[
i
^
L
u
^
C
]
+
[
1
L
0
]
v
^
i
\frac d{dt} \begin{bmatrix} \hat i_L \\\hat u_C \end{bmatrix} =\begin{bmatrix} 0 & \frac {\hat d} L \\ -\frac {\hat d} C & 0 \end{bmatrix} \begin{bmatrix} I_L \\ V_o \end{bmatrix}+ \begin{bmatrix} 0 & -\frac {1-D-\hat d} L \\ \frac {1-D-\hat d} C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} \hat i_L \\ \hat u_C \end{bmatrix}+\begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} \hat v_i
dtd[i^Lu^C]=[0−Cd^Ld^0][ILVo]+[0C1−D−d^−L1−D−d^−RC1][i^Lu^C]+[L10]v^i
线性化去除高阶小量
d
d
t
[
i
^
L
u
^
C
]
=
[
0
−
1
−
D
L
1
−
D
C
−
1
R
C
]
[
i
^
L
u
^
C
]
+
[
V
o
L
−
I
L
C
]
d
^
+
[
1
L
0
]
v
^
i
\frac d{dt} \begin{bmatrix} \hat i_L \\\hat u_C\end{bmatrix}= \begin{bmatrix} 0 & -\frac {1-D} L \\ \frac {1-D} C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} \hat i_L \\ \hat u_C \end{bmatrix} +\begin{bmatrix} \frac { V_o}{ L} \\ -\frac{I_L}{ C} \end{bmatrix} \hat d +\begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} \hat v_i
dtd[i^Lu^C]=[0C1−D−L1−D−RC1][i^Lu^C]+[LVo−CIL]d^+[L10]v^i
做 Laplace 变换,取初值为0
s
[
I
^
L
(
s
)
V
^
C
(
s
)
]
=
[
0
−
1
−
D
L
1
−
D
C
−
1
R
C
]
[
I
^
L
(
s
)
V
^
C
(
s
)
]
+
[
V
o
L
−
I
L
C
]
d
^
(
s
)
+
[
1
L
0
]
v
^
i
(
s
)
s \begin{bmatrix} \hat I_L(s) \\ \hat V_C(s) \end{bmatrix} =\begin{bmatrix} 0 & -\frac {1-D} L \\ \frac {1-D} C & -\frac 1 {RC} \end{bmatrix} \begin{bmatrix} \hat I_L (s)\\\hat V_C(s) \end{bmatrix} +\begin{bmatrix} \frac { V_o}{ L} \\ -\frac{ I_L}{ C} \end{bmatrix} \hat d (s) +\begin{bmatrix} \frac 1 L \\ 0 \end{bmatrix} \hat v_i(s)
s[I^L(s)V^C(s)]=[0C1−D−L1−D−RC1][I^L(s)V^C(s)]+[LVo−CIL]d^(s)+[L10]v^i(s)
有
s
C
V
^
C
(
s
)
=
(
1
−
D
)
I
^
L
(
s
)
−
1
R
V
^
C
(
s
)
−
I
L
d
^
(
s
)
sC\hat V_C(s)=(1-D)\hat I_L(s)-\frac 1 R\hat V_C(s)-I_L\hat d(s)
sCV^C(s)=(1−D)I^L(s)−R1V^C(s)−ILd^(s)
s
L
I
^
L
(
s
)
=
−
(
1
−
D
)
V
^
C
(
s
)
+
V
o
d
^
(
s
)
+
v
^
i
(
s
)
sL\hat I_L(s)=-(1-D)\hat V_C(s)+V_o\hat d(s)+\hat v_i(s)
sLI^L(s)=−(1−D)V^C(s)+Vod^(s)+v^i(s)
代入
v
^
i
=
0
\hat v_i=0
v^i=0 ,代入式(4),消去
I
^
L
(
s
)
\hat I_L(s)
I^L(s) 有
V
^
C
(
s
)
d
^
(
s
)
=
V
o
[
(
1
−
D
)
R
−
s
L
/
(
1
−
D
)
]
s
2
C
L
R
+
s
L
+
(
1
−
D
)
2
R
(49)
\frac{\hat V_C(s)}{\hat d(s)}=\frac{V_o\big[ (1-D)R - sL/(1-D)\big]}{s^2CLR+sL+(1-D)^2R} \tag{49}
d^(s)V^C(s)=s2CLR+sL+(1−D)2RVo[(1−D)R−sL/(1−D)](49)
与式(42)
R
E
=
R
C
=
0
R_E=R_C=0
RE=RC=0 时候的公式相同