离散程度度量:平均差、方差、标准差

数据的离散程度即衡量一组数据的分散程度如何,其衡量的标准和方式有很多,而具体选择哪一加粗样式种方式则需要依据实际的数据要求进行抉择。

首先针对不同的衡量方式的应用场景大体归纳如下:

**极差:**极差为数据样本中的最大值与最小值的差值R=max(i)-min(i),是所有方式中最为简单的一种,它反应了数据样本的数值范围,是最基本的衡量数据离散程度的方式,受极值影响较大。如在数学考试中,一个班学生得分的极差为60,反应了学习最好的学生与学习最差的学生得分差距为60.

**四分位差:**即数据样本的上四分之一位和下四分之一位的差值Q_{d}=Q_{u}-Q_{l},反应了数据中间50%部分的离散程度,其数值越小表明数据越集中,数值越大表明数据越离散,同时由于中位数位于四分位数之间,故四分位差也放映出中位数对于数据样本的代表程度,越小代表程度越高,越大代表程度越低。

**平均差:**即在这里插入图片描述,针对分组数据为在这里插入图片描述
。各变量值与平均值的差的绝对值之和除以总数n,平均差以平均数为中心,能全面准确的反应一组数据的离散状况,平均差越大,说明数据离散程度越大,反之,离散程度越小。

**方差/标准差:**方差是各变量与平均值的差的平方和除以总数n-1在这里插入图片描述
针对分组数据在这里插入图片描述

,方差开根号后为标准差,方差与标准差都能很好的反应数据的离散程度。

**异种比率:**是指非众数组的频数占总频数的比例。V_{r}=\frac{\sum f_{i}-f_{m}}{\sum f_{i}}=1-\frac{f_{m}}{\sum f_{i}}
其中\sum f_{i}为变量值的总频数,f_{m}为众数组的频数。异种比率越大,说明非众数组的频数占总频数的比重越大,众数的代表性越差,即占比越小,异种比率越小,说明众数的代表性越好,即占比越大。异种比率主要适合度量分类数据的离散程度,当然连续数据可以计算异种比率。

**离散系数:**即变异系数,针对不同数据样本的标准差和方差,因数据衡量单位不同其结果自然无法直接进行对比,为出具一个相同的衡量指标,则进行了离散系数的计算。离散系数为一组数据的标准差与平均数之比V_{i}=\frac{s}{\bar{x}}。

 	import numpy as np
    import stats as sts
    scores = [31, 24, 23, 25, 14, 25, 13, 12, 14, 23,
              32, 34, 43, 41, 21, 23, 26, 26, 34, 42,
              43, 25, 24, 23, 24, 44, 23, 14, 52,32,
              42, 44, 35, 28, 17, 21, 32, 42, 12, 34]
    #集中趋势的度量
    print('求和:',np.sum(scores))
    print('个数:',len(scores))
    print('平均值:',np.mean(scores))
    print('中位数:',np.median(scores))
    print('众数:',sts.mode(scores))
    print('上四分位数',sts.quantile(scores,p=0.25))
    print('下四分位数',sts.quantile(scores,p=0.75))
    #离散趋势的度量
    print('最大值:',np.max(scores))
    print('最小值:',np.min(scores))
    print('极差:',np.max(scores)-np.min(scores))
    print('四分位差',sts.quantile(scores,p=0.75)-sts.quantile(scores,p=0.25))
    print('标准差:',np.std(scores))
    print('方差:',np.var(scores))
    print('离散系数:',np.std(scores)/np.mean(scores))
    #偏度与峰度的度量
    print('偏度:',sts.skewness(scores))
    print('峰度:',sts.kurtosis(scores))

–参考

https://blog.youkuaiyun.com/walking_visitor/article/details/83503008

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值