The signature of a permutation is a string that is computed as follows: for each pair of consecutive elements of the permutation, write down the letter 'I' (increasing) if the second element is greater than the first one, otherwise write down the letter 'D' (decreasing). For example, the signature of the permutation {3,1,2,7,4,6,5} is "DIIDID".
Your task is as follows: You are given a string describing the signature of many possible permutations, find out how many permutations satisfy this signature.
Note: For any positive integer n, a permutation of n elements is a sequence of length n that contains each of the integers 1 through n exactly once.
Input
Each test case consists of a string of 1 to 1000 characters long, containing only the letters 'I', 'D' or '?', representing a permutation signature.
Each test case occupies exactly one single line, without leading or trailing spaces.
Proceed to the end of file. The '?' in these strings can be either 'I' or 'D'.
Output
For each test case, print the number of permutations satisfying the signature on a single line. In case the result is too large, print the remainder modulo 1000000007.
Sample Input
II ID DI DD ?D ??
Sample Output
1 2 2 1 3 6
//
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=1000000007;
const int maxn=1100;
//f[i][j]表示长度为i以j结尾的排列个数(1<=j<=i)
int f[maxn][maxn];
char str[maxn];
int main()
{
while(scanf("%s",str)==1)
{
int len=strlen(str);
int n=len+1;
f[1][1]=1;
for(int i=2;i<=n;i++)
{
char ch=str[i-2];
if(ch=='?')//f[i][j]=sum(f[i-1][k]) 1<=k<=i-1
{
int sum=0;
for(int j=1;j<=i-1;j++) sum=(sum+f[i-1][j])%mod;
for(int j=1;j<=i;j++)
{
f[i][j]=sum;
}
}
else if(ch=='I')//f[i][j]=sum(f[i-1][k]) 1<=k<=j-1
{
f[i][1]=0;
for(int j=2;j<=i;j++)
{
f[i][j]=(f[i][j-1]+f[i-1][j-1])%mod;
}
}
else//f[i][j]=sum(f[i-1][k]) j<=k<=i-1 (important j<=k)
{
f[i][i]=0;
for(int j=i-1;j>=1;j--)
{
f[i][j]=(f[i][j+1]+f[i-1][j])%mod;
}
}
}
int cnt=0;
for(int i=1;i<=n;i++)
{
cnt=(cnt+f[n][i])%mod;
}
printf("%d\n",cnt);
}
return 0;
}
本文深入探讨了代码逻辑的复杂性与优化策略,详细分析了如何通过重构、算法改进和性能调优来提高软件系统的效率。文章还涵盖了常见编程错误的避免方法以及最佳实践案例,旨在帮助开发者提升代码质量。
633

被折叠的 条评论
为什么被折叠?



