Description
There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows.
Try to find out the selected rows.
Input
There are multiply test cases.
First line: two integers N, M;
The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
Output
First output the number of rows in the selection, then output the index of the selected rows.
If there are multiply selections, you should just output any of them.
If there are no selection, just output "NO".
Sample Input
6 7 3 1 4 7 2 1 4 3 4 5 7 3 3 5 6 4 2 3 6 7 2 2 7
Sample Output
3 2 4 6
//
#include<stdio.h>
#include<string.h>
#include<time.h>
#define N 1005
#define V 102005
int U[V],D[V];
int L[V],R[V];
int C[V];
int H[N],S[N],mark[V];
int size,n,m,OK[N],flag;
void Link(int r,int c)
{
S[c]++;C[size]=c;
U[size]=U[c];D[U[c]]=size;
D[size]=c;U[c]=size;
if(H[r]==-1) H[r]=L[size]=R[size]=size;
else
{
L[size]=L[H[r]];R[L[H[r]]]=size;
R[size]=H[r];L[H[r]]=size;
}
mark[size]=r;
size++;
}
void remove(int c)//删除列
{
int i,j;
L[R[c]]=L[c];
R[L[c]]=R[c];
for(i=D[c];i!=c;i=D[i])
{
for(j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j],D[U[j]]=D[j];
S[C[j]]--;
}
}
}
void resume(int c)
{
int i,j;
for(i=U[c];i!=c;i=U[i])
{
for(j=L[i];j!=i;j=L[j])
{
U[D[j]]=j;D[U[j]]=j;
S[C[j]]++;
}
}
L[R[c]]=c;
R[L[c]]=c;
}
void Dance(int k)
{
int i,j,Min,c;
if(!R[0])
{
flag=1;//标记有解
printf("%d",k);
for(i=0;i<k;i++)
printf(" %d",mark[OK[i]]);
printf("\n");
return;
}
for(Min=N,i=R[0];i;i=R[i])
if(S[i]<Min) Min=S[i],c=i;
remove(c);//删除该列
for(i=D[c];i!=c;i=D[i])
{
OK[k]=i;
for(j=R[i];j!=i;j=R[j])
remove(C[j]);
Dance(k+1);
if(flag) return;//只要一组解
for(j=L[i];j!=i;j=L[j])
resume(C[j]);
}
resume(c);
}
int main()
{
int i,j,num;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=0;i<=m;i++)
{
S[i]=0;
D[i]=U[i]=i;
L[i+1]=i;R[i]=i+1;
}R[m]=0;
size=m+1;
memset(H,-1,sizeof(H));
memset(mark,0,sizeof(mark));
for(i=1;i<=n;i++)
{
scanf("%d",&num);
while(num--)
{
scanf("%d",&j);
Link(i,j);
}
}
flag=0;
Dance(0);
if(!flag) printf("NO\n");
}
return 0;
}
本文介绍了一种解决特定矩阵覆盖问题的算法,通过选取矩阵的若干行使得每列恰好包含一个1,实现了对矩阵的完全覆盖。该算法通过构建图结构并使用DFS进行搜索来找出满足条件的行集合,若存在解则输出解集,否则输出无解。

被折叠的 条评论
为什么被折叠?



