不会做 直接贴
Each case contains a single integer L (L<=1,000,000,000,000).
1 5
1HintIn our test case, we could find a right triangle (3,4,5) which satisfy 3,4,5<=5 and gcd(3,4)=1,gcd(3,5)=1,gcd(4,5)=1.
//
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#define MAXN 1000000
using namespace std;
int pri[MAXN+10],pri_num,tab_phi[MAXN+10];
bool temp[MAXN+10];
int T,num,Dec[20];
long long ans,n;
void print_prime()
{
pri_num=0;
for(int i=2;i<MAXN;i+=2) temp[i]=1;
pri[pri_num++]=2;
tab_phi[2]=1;
tab_phi[1]=1;
for(int i=3;i<MAXN;i+=2)
{
if(!temp[i]) pri[pri_num++]=i,tab_phi[i]=i-1;
for(int j=0;j<pri_num&&i*pri[j]<MAXN;j++)
{
temp[i*pri[j]]=1;
if(i%pri[j]==0) {tab_phi[i*pri[j]]=tab_phi[i]*pri[j];break;}
else tab_phi[i*pri[j]]=tab_phi[i]*(pri[j]-1);
}
if((((i+1)>>1)&1)==0) tab_phi[i+1]=tab_phi[(i+1)>>1]<<1;
else tab_phi[i+1]=tab_phi[(i+1)>>1];
}
}
void prime_dec(int a)
{
num=0;
if(!temp[a]) {Dec[num++]=a; return;}
for(int i=0;i<pri_num&&a>1;i++)
{
if(a%pri[i]==0)
{
Dec[num++]=pri[i];
while(a%pri[i]==0)
{
a/=pri[i];
}
if(a>1&&(!temp[a])) {Dec[num++]=a; return;}
}
}
}
int dfs(int k,int l,int s,int a)
{
if(k==num)
{
if(l&1) ans-=a/s;
else ans+=a/s;
return 0;
}
dfs(k+1,l,s,a);
dfs(k+1,l+1,s*Dec[k],a);
return 0;
}
int main()
{
print_prime();
cin>>T;
while(T--)
{
ans=0;
scanf("%I64d",&n);
int m=(int)sqrt(n+0.0);
for(int i=m;i>0;i--)
{
int p=(int)sqrt(n-(long long)i*i+0.0);
if(i&1)
{
prime_dec(i);
if(i<=p) dfs(0,0,1,i>>1);
else dfs(0,0,1,p>>1);
}
else
{
if(i<=p) ans+=tab_phi[i];
else { prime_dec(i); dfs(0,0,1,p); }
}
}
printf("%I64d\n",ans);
}
return 0;
}
本文探讨了如何在无限长的棍子上切割三个整数长度的子段以形成直角三角形的问题。通过数学算法确定了在特定长度限制下可以形成的直角三角形的数量。
5931

被折叠的 条评论
为什么被折叠?



