joj 2736: 二叉树计数 卡特兰数取模 1<=n<=10^9,1<=m<=32768

该博客探讨了如何计算含有特定数量节点的不同二叉树的总数,并将其结果对一个大素数取模。输入包括节点数量n和模数k,输出为二叉树的数量对k取模后的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给出n,k.求含有n个节点的不同二叉树数目%k

Input

MULTI TEST CASE!!
每行两个整数n,k(1<=n<=10^9,1<=k<=32768)

Output

一行二叉树的数目%k

Sample Input

3 100

Sample Output

5
//师哥模板
#include <stdio.h>
#include <utility>
#include <vector>
#include <algorithm>
int Pow(int x, int b)
{
 int ret = 1;
 for(int s = x; b; b >>= 1)
 {
  if(b & 1)
   ret *= s;
  s *= s;
 }
 return ret;
}
int PowMod(int x, int b, int p)
{
 int ret = 1 % p;
 for(int s = x % p; b; b >>= 1)
 {
  if(b & 1)
  {
   ret *= s;
   ret %= p;
  }
  s *= s;
  s %= p;
 }
 return ret;
}
std::pair<int, int> ExGcd(int a, int b)
{
 if(a == 0) return std::make_pair(0, 1);
 std::pair<int, int> s = ExGcd(b % a, a);
 return std::make_pair(s.second - b / a * s.first, s.first);
}
int Inv(int a, int m) // ax == 1 mod m
{
 // assert gcd(a, m) == 1
 std::pair<int, int> s = ExGcd(a, m);
 // s.first * a + s.second * m == 1
 return s.first < 0 ? s.first + m : s.first;
}
std::pair<int, int> FacMod(int n, int p, int k)
{
 // assert p > 1, k > 0
 int pk = Pow(p, k);
 int S[pk];
 S[0] = 1 % pk;
 for(int i = 1; i < pk; ++i)
 {
  S[i] = S[i - 1];
  if(i % p != 0)
  {
   S[i] *= i;
   S[i] %= pk;
  }
 }
 int ret = 1 % pk, et = 0, ep = 0; // S[pk - 1]^et, p^ep
 while(n)
 {
  et += n / pk;
  ret *= S[n % pk];
  ret %= pk;
  ep += n / p;
  n /= p;
 }
 ret *= PowMod(S[pk - 1], et, pk);
 ret %= pk;
 return std::make_pair(ret, ep);
}
int CRT(int x1, int m1, int x2, int m2) // Linear Congruence Equation
{
 // assert gcd(m1, m2) == 1
 // let x == x1 * k1 + x2 * k2 mod m1*m2
 // k1 == 1 mod m1, k1 == 0 mod m2
 // k2 == 0 mod m1, k2 == 1 mod m2
 std::pair<int, int> s = ExGcd(m1, m2);
 // s.first * m1 + s.second * m2 == 1
 int k1 = s.second * m2, k2 = s.first * m1;
 int t = (x1 * k1 + x2 * k2) % (m1 * m2);
 return t < 0 ? t + m1 * m2 : t;
}
std::vector<std::pair<int, int> > Factorize(int n)
{
 std::vector<std::pair<int, int> > ret;
 for(int x = 2; x * x <= n; ++x)
 {
  if(n % x == 0)
  {
   int c = 0;
   while(n % x == 0)
   {
    ++c;
    n /= x;
   }
   ret.push_back(std::make_pair(x, c) );
  }
 }
 if(n > 1) ret.push_back(std::make_pair(n, 1) );
 return ret;
}
int Calc(int n, int p)
{
 std::vector<std::pair<int, int> > factors = Factorize(p);
 int x = 0, m = 1;
 for(int i = 0; i < factors.size(); ++i)
 {
  // C(n, k) mod p[i]^k[i]
  std::pair<int, int> f2n = FacMod(n * 2, factors[i].first, factors[i].second);
  std::pair<int, int> fn = FacMod(n, factors[i].first, factors[i].second);
  std::pair<int, int> fn1 = FacMod(n + 1, factors[i].first, factors[i].second);
  int pk = Pow(factors[i].first, factors[i].second);
  int t = f2n.first * Inv(fn.first, pk) % pk;
  t = t * Inv(fn1.first, pk) % pk;
  t = t * PowMod(factors[i].first, f2n.second - fn.second - fn1.second, pk) % pk;
  x = CRT(x, m, t, pk);
  m *= pk;
 }
 return x;
}
int main()
{
 int n, p;
 while(scanf("%d%d", &n, &p) != -1)
  printf("%d/n", Calc(n, p) );
 return 0;
}
//其他模板
#include <cstdio>
#include <cmath>
#include <stdlib.h>
#include <memory.h>
typedef int typec;
typec GCD(typec a, typec b)
{
    return b? GCD(b, a % b) : a;
}
typec extendGCD(typec a, typec b, typec& x, typec& y)
{
    if(!b) return x = 1, y = 0, a;
    typec res = extendGCD(b, a % b, x, y), tmp = x;
    x = y, y = tmp -(a/b)*y;
    return res;
}
typec power(typec x, typec k)
{
    typec res = 1;
    while(k)
    {
        if(k&1) res *= x;
        x *= x, k >>= 1;
    }
    return res;
}
typec powerMod(typec x, typec k, typec m)
{
    typec res = 1;
    while(x %= m, k)
    {
        if(k&1) res *= x, res %= m;
        x *= x, k >>= 1;
    }
    return res;
}
typec inverse(typec a, typec p, typec t = 1)
{
    typec pt = power(p, t);
    typec x, y;
    y = extendGCD(a, pt, x, y);
    return x < 0? x += pt : x;
}
typec linearCongruence(typec a, typec b, typec p, typec q)
{
    typec x, y;
    y = extendGCD(p, q, x, y);
    x *= b - a, x = p * x + a, x %= p * q;
    if(x < 0) x += p * q;
    return x;
}
const int PRIMEMAX = 1000;
int prime[PRIMEMAX + 1];
int getPrime()
{
    memset(prime, 0, sizeof(int) * (PRIMEMAX + 1));
    for(int i = 2; i <= PRIMEMAX; i++)
    {
        if(!prime[i]) prime[++prime[0]] = i;
        for(int j = 1; j <= prime[0] && prime[j] <= PRIMEMAX/i; j++)
        {
            prime[prime[j]*i] = 1;
            if(i % prime[j] == 0) break;
        }
    }
    return prime[0];
}
int factor[100][3], facCnt;
int getFactors(int x)
{
    facCnt = 0;
    int tmp = x;
    for(int i = 1; prime[i] <= tmp / prime[i]; i++)
    {
        factor[facCnt][1] = 1, factor[facCnt][2] = 0;
        if(tmp % prime[i] == 0)
            factor[facCnt][0] = prime[i];
        while(tmp % prime[i] == 0)
            factor[facCnt][2]++, factor[facCnt][1] *= prime[i], tmp /= prime[i];
        if(factor[facCnt][2]) facCnt++;
    }
    if(tmp != 1) factor[facCnt][0] = tmp, factor[facCnt][1] = tmp, factor[facCnt++][2] = 1;
    return facCnt;
}
typec combinationModPt(typec n, typec k, typec p, typec t = 1)
{
    if(k > n) return 0;
    if(n - k < k) k = n - k;
    typec pt = power(p, t);
    typec a = 1, b = k + 1, x, y;
    int pcnt = 0;
    while(b % p == 0) pcnt--, b /= p;
    b %= pt;
    for(int i = 1; i <= k; i++)
    {
        x = n - i + 1, y = i;
        while(x % p == 0) pcnt++, x /= p;
        while(y % p == 0) pcnt--, y /= p;
        x %= pt, y %= pt, a *= x, b *= y;
        a %= pt, b %= pt;
    }
    if(pcnt >= t) return 0;
    extendGCD(b, pt, x, y);
    if(x < 0) x += pt;
    a *= x, a %= pt;
    return a * power(p, pcnt) % pt;
}
const typec PTMAX = 32768;
typec facmod[PTMAX];
void initFacMod(typec p, typec t = 1)
{
    typec pt = power(p, t);
    facmod[0] = 1 % pt;
    for(int i = 1; i < pt; i++)
    {
        if(i % p) facmod[i] = facmod[i - 1] * i % pt;
        else facmod[i] = facmod[i - 1];
    }
}
typec factorialMod(typec n, typec &pcnt, typec p, typec t = 1)
{
    typec pt = power(p, t), res = 1;
    typec stepCnt = 0;
    while(n)
    {
        res *= facmod[n % pt], res %= pt;
        stepCnt += n /pt, n /= p, pcnt += n;
    }
    res *= powerMod(facmod[pt - 1], stepCnt, pt);
    return res %= pt;
}
typec combinationModPtFac(typec n, typec k, typec p, typec t = 1)
{
    if(k > n || p == 1) return 0;
    if(n - k < k) k = n - k;
    typec pt = power(p, t), pcnt = 0, pmcnt = 0;
    if(k < pt) return combinationModPt(n, k, p, t);
    initFacMod(p, t);
    typec a = factorialMod(n, pcnt, p, t);
    typec b = factorialMod(k, pmcnt, p, t);
    b *= b, pmcnt <<= 1, b %= pt;
    typec tmp = k + 1;
    while(tmp % p == 0) tmp /= p, pmcnt++;
    b *= tmp % pt, b %= pt;
    pcnt -= pmcnt;
    if(pcnt >= t) return 0;
    a *= inverse(b, p, t), a %= pt;
    return a * power(p, pcnt) % pt;
}
typec combinationModFac(typec n, typec k, typec m)
{
    getFactors(m);
    typec a, b, p, q;
    for(int i = 0; i < facCnt; i++)
    {
        if(!i) a = combinationModPtFac(n, k, factor[i][0], factor[i][2]), p = factor[i][1];
        else b = combinationModPtFac(n, k, factor[i][0], factor[i][2]), q = factor[i][1];
        if(!i) continue;
        a = linearCongruence(a, b, p, q), p *= q;
    }
    return a;
}
int main()
{
    getPrime();
    typec n, k;
    while(scanf("%d %d", &n, &k) != EOF)
        printf("%d/n", combinationModFac(2 * n, n, k));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值