1,迪杰斯特拉算法介绍
迪杰斯特拉算法是典型最短路径算法,用于计算图或网中某个特定顶点到其他所有顶点的最短路径。主要特点是以起始点为中心向外,层层扩展,直到扩展覆盖所有顶点。
2,迪杰斯特拉算法思想
设G=(V,E)为一个带全有向图,把图中顶点集合V分成两组。第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将所到达最短路径的顶点加入到集合S中,直到全部顶点都加入到S中)。第二组为其余未确定最短路径的顶点集合(用U表示,U=V-S,U中的顶点不断的加入到S中,直到U为空,S=V)。在U加入S的过程中,始终保持源点到S中各顶点的最短路径长度小于或等于源点到U中任意顶点的最短路径长度。
3,迪杰斯特拉算法执行步骤
设 n 为图 G=(V,E) 中的顶点数,dist[n] 存放从源点到每个终点当前最短路径的长度,path[n] 存放相应路径,S 为已求得最短路径的终点的集合,U为V-S,初始为不含有源点的所有顶点。
(1)初始化已求的最短路径的集合S为只含有元素源点a,S={a}。
(2)从U中选取一个距离源点v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上顶点k到u边上的权。
迪杰斯特拉算法是典型最短路径算法,用于计算图或网中某个特定顶点到其他所有顶点的最短路径。主要特点是以起始点为中心向外,层层扩展,直到扩展覆盖所有顶点。
2,迪杰斯特拉算法思想
设G=(V,E)为一个带全有向图,把图中顶点集合V分成两组。第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将所到达最短路径的顶点加入到集合S中,直到全部顶点都加入到S中)。第二组为其余未确定最短路径的顶点集合(用U表示,U=V-S,U中的顶点不断的加入到S中,直到U为空,S=V)。在U加入S的过程中,始终保持源点到S中各顶点的最短路径长度小于或等于源点到U中任意顶点的最短路径长度。
3,迪杰斯特拉算法执行步骤
设 n 为图 G=(V,E) 中的顶点数,dist[n] 存放从源点到每个终点当前最短路径的长度,path[n] 存放相应路径,S 为已求得最短路径的终点的集合,U为V-S,初始为不含有源点的所有顶点。
(1)初始化已求的最短路径的集合S为只含有元素源点a,S={a}。
(2)从U中选取一个距离源点v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值为顶点k的距离加上顶点k到u边上的权。
(4)重复步骤(2)和(3)直到所有顶点都包含在S中。
C++ Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
#include<bits/stdc++.h>
using namespace std; const int maxnum=100;///最大的节点数 const int maxint=9999; ///如果两点没有路径,则设置为此较大的值 int dist[maxnum]; ///存储原点到各点的最短距离 int c[maxnum][maxnum]; ///存储图的邻接矩阵 int n,line; ///节点数,和路径数 void dijikstr(int n,int v,int dist[maxnum],int c[maxnum][maxnum]) { bool s[maxnum]; ///标记这个点是否已求出最短的路径。 for(int i=1;i<=n;i++) {///初始化dist[]和s[] dist[i]=c[v][i]; s[i]=0; } ///原点 s[v]=1; dist[v]=0; ///原点不用再进行计算,所以从2开始 for(int i=2;i<=n;i++) { int temp=maxint; int u=v; for(int j=1;j<=n;j++) if((!s[j])&&dist[j]<temp) {///找出剩余的 最短路径 u=j; temp=dist[j]; } s[u]=1; ///更新剩余的点与原点的距离(dist) for(int j=1;j<=n;j++) if(!s[j]&&c[u][j]<maxint) { int newdist=dist[u]+c[u][j]; if(dist[j]>newdist) { dist[j]=newdist; } } } } int main() { scanf("%d %d",&n,&line); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) c[i][j]=maxint; int p,q,x; for(int i=1;i<=line;i++) { scanf("%d %d %d",&p,&q,&x); if(x<c[p][q]) { c[q][p]=x; c[p][q]=x; } } for(int i=1;i<=n;i++) dist[i]=maxnum; dijikstr(n,1,dist,c); printf("源点到最后一个顶点的最短路径长度:%d\n",dist[n]); return 0; } |
测试数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
结果:
60