法线纹理

1.在切线空间下计算

struct Attributes
{
    float4 positionOS : POSITION;
    float3 normal:NORMAL;
    float4 tangent : TANGENT;
    float4 texcoord : TEXCOORD0;
};

使用TANGENT语义来定义切线变量,需要注意的是,类型为 float4,因为需要使用tangent.w来确定在切线空间中副切线的方向性.

struct Varyings
{
    float4 positionCS : SV_POSITION;
    float4 uv : TEXCOORD0;
    float3 lightDir: TEXCOORD1;
    float3 viewDir : TEXCOORD2;
};

注意uv变量,定义为float4类型,xy存储_MainTex的纹理坐标,zw存储_BumpMap的纹理坐标.

Shader "Unity Shaders Book/Chapter 7/Normal Map In Tangent Space" {
    Properties {
        _Color ("Color Tint", Color) = (1, 1, 1, 1)
        _MainTex ("Main Tex", 2D) = "white" {}
        _BumpMap ("Normal Map", 2D) = "bump" {}
        _BumpScale ("Bump Scale", Float) = 1.0
        _Specular ("Specular", Color) = (1, 1, 1, 1)
        _Gloss ("Gloss", Range(8.0, 256)) = 20
    }

    SubShader {
        Tags {
            "RenderType"="Opaque"
            "RenderPipeline"="UniversalPipeline"
        }

        Pass {
            HLSLPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
            #include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Input.hlsl"

            CBUFFER_START(UnityPerMaterial)
            half4 _Color;
            sampler2D _MainTex;
            float4 _MainTex_ST;
            sampler2D _BumpMap;
            float4 _BumpMap_ST;
            float _BumpScale;
            half4 _Specular;
            float _Gloss;
            CBUFFER_END

            struct Attributes
            {
                float4 positionOS : POSITION;
                float3 normal:NORMAL;
                float4 tangent : TANGENT;
                float4 texcoord : TEXCOORD0;
            };


            struct Varyings
            {
                float4 positionCS : SV_POSITION;
                float4 uv : TEXCOORD0;
                float3 lightDir: TEXCOORD1;
                float3 viewDir : TEXCOORD2;
            };

            // Unity doesn't support the 'inverse' function in native shader
            // so we write one by our own
            // Note: this function is just a demonstration, not too confident on the math or the speed
            // Reference: http://answers.unity3d.com/questions/218333/shader-inversefloat4x4-function.html
            float4x4 inverse(float4x4 input)
            {
                #define minor(a,b,c) determinant(float3x3(input.a, input.b, input.c))

                float4x4 cofactors = float4x4(
                    minor(_22_23_24, _32_33_34, _42_43_44),
                    -minor(_21_23_24, _31_33_34, _41_43_44),
                    minor(_21_22_24, _31_32_34, _41_42_44),
                    -minor(_21_22_23, _31_32_33, _41_42_43),

                    -minor(_12_13_14, _32_33_34, _42_43_44),
                    minor(_11_13_14, _31_33_34, _41_43_44),
                    -minor(_11_12_14, _31_32_34, _41_42_44),
                    minor(_11_12_13, _31_32_33, _41_42_43),

                    minor(_12_13_14, _22_23_24, _42_43_44),
                    -minor(_11_13_14, _21_23_24, _41_43_44),
                    minor(_11_12_14, _21_22_24, _41_42_44),
                    -minor(_11_12_13, _21_22_23, _41_42_43),

                    -minor(_12_13_14, _22_23_24, _32_33_34),
                    minor(_11_13_14, _21_23_24, _31_33_34),
                    -minor(_11_12_14, _21_22_24, _31_32_34),
                    minor(_11_12_13, _21_22_23, _31_32_33)
                );
                #undef minor
                return transpose(cofactors) / determinant(input);
            }

            Varyings vert(Attributes input)
            {
                Varyings output;
                output.positionCS = mul(UNITY_MATRIX_MVP, input.positionOS);
                //也可以使用 TransformObjectToHClip 方法
                //output.positionCS = TransformObjectToHClip(input.positionOS.xyz);

                output.uv.xy = input.texcoord.xy * _MainTex_ST.xy + _MainTex_ST.zw;
                output.uv.zw = input.texcoord.xy * _BumpMap_ST.xy + _BumpMap_ST.zw;
                // 或者调用内置函数
                //output.uv.xy = TRANSFORM_TEX(input.texcoord, _MainTex);
                //output.uv.zw = TRANSFORM_TEX(input.texcoord, _BumpMap);

                ///
				/// Note that the code below can handle both uniform and non-uniform scales
				///
                // Construct a matrix that transforms a point/vector from tangent space to world space
                float3 worldNormal = TransformObjectToWorldNormal(input.normal);
                float3 worldTangent = TransformObjectToWorldDir(input.tangent.xyz);
                float3 worldBinormal = cross(worldNormal, worldTangent) * input.tangent.w;

                /*
                float4x4 tangentToWorld = float4x4(worldTangent.x, worldBinormal.x, worldNormal.x, 0.0,
                                                   worldTangent.y, worldBinormal.y, worldNormal.y, 0.0,
                                                   worldTangent.z, worldBinormal.z, worldNormal.z, 0.0,
                                                   0.0, 0.0, 0.0, 1.0);
                // The matrix that transforms from world space to tangent space is inverse of tangentToWorld
                float3x3 worldToTangent = inverse(tangentToWorld);
                */

                //wToT = the inverse of tToW = the transpose of tToW as long as tToW is an orthogonal matrix.
                float3x3 worldToTangent = float3x3(worldTangent, worldBinormal, worldNormal);

                // Transform the light and view dir from world space to tangent space
                float3 positionWS = TransformObjectToWorld(input.positionOS.xyz);
                float3 worldLightPos = TransformObjectToWorld(_MainLightPosition.xyz);
                float3 worldLightDir = worldLightPos - positionWS;
                //Light mainLight = GetMainLight();
                //float3 worldLightDir = mainLight.direction;
                float3 worldSpaceViewDir = _WorldSpaceCameraPos.xyz - positionWS;
                output.lightDir = mul(worldToTangent, worldLightDir);
                output.viewDir = mul(worldToTangent, worldSpaceViewDir);

                ///
                /// Note that the code below can only handle uniform scales, not including non-uniform scales
                /// 

                // Compute the binormal
                //				float3 binormal = cross( normalize(v.normal), normalize(v.tangent.xyz) ) * v.tangent.w;
                //				// Construct a matrix which transform vectors from object space to tangent space
                //				float3x3 rotation = float3x3(v.tangent.xyz, binormal, v.normal);
                // Or just use the built-in macro
                //				TANGENT_SPACE_ROTATION;
                //				
                //				// Transform the light direction from object space to tangent space
                //				o.lightDir = mul(rotation, normalize(ObjSpaceLightDir(v.vertex))).xyz;
                //				// Transform the view direction from object space to tangent space
                //				o.viewDir = mul(rotation, normalize(ObjSpaceViewDir(v.vertex))).xyz;
                return output;
            }

            half4 frag(Varyings input): SV_Target
            {
                float3 tangentLightDir = normalize(input.lightDir);
                float3 tangentViewDir = normalize(input.viewDir);

                // Get the texel in the normal map
                float4 packedNormal = tex2D(_BumpMap, input.uv.zw);
                float3 tangentNormal;
                // If the texture is not marked as "Normal map"
                //				tangentNormal.xy = (packedNormal.xy * 2 - 1) * _BumpScale;
                //				tangentNormal.z = sqrt(1.0 - saturate(dot(tangentNormal.xy, tangentNormal.xy)));

                // Or mark the texture as "Normal map", and use the built-in funciton
                tangentNormal = UnpackNormal(packedNormal);
                tangentNormal.xy *= _BumpScale;
                tangentNormal.z = sqrt(1.0 - saturate(dot(tangentNormal.xy, tangentNormal.xy)));

                float3 albedo = tex2D(_MainTex, input.uv).rgb * _Color.rgb;

                float3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz * albedo;

                float3 diffuse = _MainLightColor.rgb * albedo * max(0, dot(tangentNormal, tangentLightDir));

                float3 halfDir = normalize(tangentLightDir + tangentViewDir);
                float3 specular = _MainLightColor.rgb * _Specular.rgb *
                    pow(max(0, dot(tangentNormal, halfDir)), _Gloss);

                return float4(ambient + diffuse + specular, 1.0);
            }
            ENDHLSL
        }
    }
}
定义:上下文无关文法是一种描述形式语言的数学模型,由四元组 G=(V,Σ,R,S) 构成。其中,V 是非终结符集合,Σ 是终结符集合,R 是产生式规则集合,S 是起始符号。 示例:在文档中,有 G(E) 和 G(S) 等上下文无关文法,用于描述表达式的结构。例如,G(E) 的定义如下: E→T∣E+T∣E−T T→F∣T∗F∣T/F F→(E)∣i 这里,E、T、F 是非终结符,而 +、−、∗、/、(、) 和 i 是终结符。该文法用于描述算术表达式的构造方式。 推导是根据文法规则从起始符号逐步生成句子的过程,分为两种类型: 最左推导:始终扩展当前最左边的未展开非终结符。 最右推导:始终扩展当前最右边的未展开非终结符。 例如,在 G(N) 的上下文无关文法中,数字串的最左推导过程可以表示为: N⇒ND⇒NDD⇒⋯⇒DDD⇒0DDD⇒01DD⇒012D⇒0127 语法树是通过图形方式展示字符串如何根据文法规则进行推导的结构。它清晰地反映了推导过程中的层次关系。例如,对于表达式 i+i∗i,其语法树可以直观地展示操作符和操作数之间的层次结构。 如果一个句子存在多个不同的语法树,即可以通过多种推导过程生成,那么这个文法就被认为是二义性的。例如,句子 iiiei 有两个可能的语法树,这表明该文法存在二义性。 在自动机理论中,确定化是指将非确定有限自动机(NFA)转换为确定有限自动机(DFA),以确保每个状态在读取输入符号时只有一个确定的转移路径。最小化则是指去除 DFA 中的冗余状态,以获得更简洁的模型。文档中提供了 DFA 确定化和最小化的详细步骤示例。 正则表达式是一种用于匹配字符串模式的工具。文档中给出了许多正则表达式的例子,例如 (0∣1)∗01,用于匹配所有以“01”结尾的由 0 和 1 组成的字符串。正则表达式在文本处理和模式匹配中具有广泛应用。 综上所述,编译原理不仅涉
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值