下面是单链表的一个C++实现,参考了《数据结构与算法分析C语言版》及不少牛人的分析总结,在此一并感谢了。在VC2005上经反复验证试验,结果非常不错。但可能还有不少bug,如果发现bug, 请告诉我一下。
注意:单链表及双向及循环链表均不适用表头(即哑节点,dummy node), 即m_pNodeHead指针指向链表的第一个真正节点。
/*slist.h*/
#include <assert.h>
#include <crtdbg.h>
template<typename T>//class T must have default constructor
class Node
{
public:
T data;
Node<T> *next;
Node() : data(T()), next(NULL) {}
Node(const T &initdata) : data(initdata), next(NULL) {}
Node(const T &initdata, Node<T> *p) : data(initdata), next(p) {}
};
template<typename T>
class SList
{
public:
SList();
SList(const T &initdata);
SList(const SList<T>& other);
SList<T>& operator=(const SList<T>& other);
~SList();
public:
void Invert();
int IsEmpty() const;
int GetCount() const;
int InsertBefore(const int pos, const T data);
int InsertAfter(const int pos, const T data);
int AddHead(const T data);
int AddTail(const T data);
void RemoveAt(const int pos);
void RemoveHead();
void RemoveTail();
void RemoveAll();
T& GetTail();
T GetTail() const;
T& GetHead();
T GetHead() const;
T& GetAt(const int pos);
T GetAt(const int pos) const;
void SetAt(const int pos, T data);
int Find(const T data) const;
int FindCircle() const;
int FindCross(SList& testlist);
protected:
int m_nCount;
Node<T> *m_pNodeHead;
};
template<typename T>
inline SList<T>::SList() : m_nCount(0), m_pNodeHead(NULL)
{
}
template<typename T>
inline SList<T>::SList(const T &initdata) : m_nCount(0), m_pNodeHead(NULL)
{
AddHead(initdata);
}
template<typename T>
inline SList<T>::SList(const SList<T>& other) : m_nCount(0), m_pNodeHead(NULL)
{
if(other.m_nCount>0)
{
for(int i=1;i<=other.m_nCount;i++)
{
AddTail(other.GetAt(i));
}
}
}
template<typename T>
inline SList<T>& SList<T>::operator=(const SList<T>& other)
{
if(this==&other)
{
return *this;
}
if(m_nCount>0)
{
RemoveAll();
}
if(other.m_nCount>0)
{
for(int i=1;i<=other.m_nCount;i++)
{
AddTail(other.GetAt(i));
}
}
return *this;
}
template<typename T>
inline SList<T>::~SList()
{
RemoveAll();
}
//reverse the list
template<typename T>
inline void SList<T>::Invert()
{
if(m_nCount<=1) return;
Node<T> *curNod,*preNod,*nextNod;
curNod=m_pNodeHead;
preNod=NULL;
for(int i=1;i<=m_nCount;i++)
{
nextNod=curNod->next;
curNod->next=preNod;
preNod=curNod;
curNod=nextNod;
}
m_pNodeHead=preNod;
return;
}
template<typename T>
inline int SList<T>::IsEmpty() const
{
return 0 == m_nCount;
}
template<typename T>
inline int SList<T>::AddHead(const T data)
{
/*Node<T> *pNewNode;
try{
pNewNode = new Node<T>;
}
catch (std::bad_alloc&)
{
return 0;
}
pNewNode->data = data;
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
++m_nCount;
return 1;*/
return InsertBefore(1,data);
}
template<typename T>
inline int SList<T>::AddTail(const T data)
{
return InsertAfter(GetCount(), data);
}
// if success, return the position of the new node.
// if fail, return 0.
template<typename T>
inline int SList<T>::InsertBefore(const int pos, const T data)
{
int i;
int nRetPos;
Node<T> *pTmpNode1;
Node<T> *pTmpNode2;
Node<T> *pNewNode;
try{
pNewNode = new Node<T>;
}
catch (std::bad_alloc&)
{
nRetPos = 0;
return nRetPos;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
++m_nCount;
return nRetPos;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// insert before head node?
if (1 == pos)
{
pNewNode->next = m_pNodeHead;
m_pNodeHead = pNewNode;
nRetPos = 1;
++m_nCount;
return nRetPos;
}
// if the list is not empty and is not inserted before head node,
// seek to the pos of the list and insert the new node before it.
pTmpNode1 = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pNewNode->next = pTmpNode1;
pTmpNode2->next = pNewNode;
nRetPos = pos;
++m_nCount;
return nRetPos;
}
// if success, return the position of the new node.
// if fail, return 0.
template<typename T>
inline int SList<T>::InsertAfter(const int pos, const T data)
{
int i;
int nRetPos;
Node<T> *pTmpNode;
Node<T> *pNewNode;
try{
pNewNode = new Node<T>;
}
catch (std::bad_alloc&)
{
nRetPos = 0;
return nRetPos;
}
pNewNode->data = data;
// if the list is empty, replace the head node with the new node.
if (NULL == m_pNodeHead)
{
pNewNode->next = NULL;
m_pNodeHead = pNewNode;
nRetPos = 1;
++m_nCount;
return nRetPos;
}
// is pos range valid?
ASSERT(1 <= pos && pos <= m_nCount);
// if the list is not empty,
// seek to the pos of the list and insert the new node after it.
pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pNewNode->next = pTmpNode->next;
pTmpNode->next = pNewNode;
nRetPos = pos + 1;
++m_nCount;
return nRetPos;
}
template<typename T>
inline int SList<T>::GetCount() const
{
return m_nCount;
}
template<typename T>
inline void SList<T>::RemoveAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
Node<T> *pTmpNode1;
Node<T> *pTmpNode2;
pTmpNode1 = m_pNodeHead;
// head node?
if (1 == pos)
{
m_pNodeHead = m_pNodeHead->next;
delete pTmpNode1;
--m_nCount;
return;
}
for (i = 1; i < pos; ++i)
{
// we will get the previous node of the target node after
// the for loop finished, and it would be stored into pTmpNode2
pTmpNode2 = pTmpNode1;
pTmpNode1 = pTmpNode1->next;
}
pTmpNode2->next = pTmpNode1->next;
delete pTmpNode1;
--m_nCount;
}
template<typename T>
inline void SList<T>::RemoveHead()
{
ASSERT(0 != m_nCount);
RemoveAt(1);
}
template<typename T>
inline void SList<T>::RemoveTail()
{
ASSERT(0 != m_nCount);
RemoveAt(m_nCount);
}
template<typename T>
inline void SList<T>::RemoveAll()
{
int i;
int nCount;
Node<T> *pTmpNode;
nCount = m_nCount;
if(nCount==0)
{
return;
}
for (i = 0; i < nCount; ++i)
{
pTmpNode = m_pNodeHead->next;
delete m_pNodeHead;
m_pNodeHead = pTmpNode;
}
m_pNodeHead=NULL;
m_nCount = 0;
}
template<typename T>
inline T& SList<T>::GetTail()
{
ASSERT(0 != m_nCount);
int i;
int nCount;
Node<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T SList<T>::GetTail() const
{
ASSERT(0 != m_nCount);
int i;
int nCount;
Node<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 1; i < nCount; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T& SList<T>::GetHead()
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline T SList<T>::GetHead() const
{
ASSERT(0 != m_nCount);
return m_pNodeHead->data;
}
template<typename T>
inline T& SList<T>::GetAt(const int pos)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
Node<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline T SList<T>::GetAt(const int pos) const
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
Node<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
return pTmpNode->data;
}
template<typename T>
inline void SList<T>::SetAt(const int pos, T data)
{
ASSERT(1 <= pos && pos <= m_nCount);
int i;
Node<T> *pTmpNode = m_pNodeHead;
for (i = 1; i < pos; ++i)
{
pTmpNode = pTmpNode->next;
}
pTmpNode->data = data;
}
template<typename T>
inline int SList<T>::Find(const T data) const
{
int i;
int nCount;
Node<T> *pTmpNode = m_pNodeHead;
nCount = m_nCount;
for (i = 0; i < nCount; ++i)
{
if (data == pTmpNode->data)
return i + 1;
pTmpNode = pTmpNode->next;
}
return 0;
}
/*判断链表是否有环,如果有环则返回环的首结点位置,否则返回0*/
template<typename T>
inline int SList<T>::FindCircle() const
{
if(0==m_nCount)
{
return 0;
}
Node<T>* p1=m_pNodeHead;
Node<T>* p2=m_pNodeHead;
/*判断链表是否有环,当p1=p2时说明链表有环,程序跳出循环。如果p2一直走到链表尽头则说明没有环。*/
do{
if(p1!=NULL&&p2!=NULL&&p2->next!=NULL)
{
p1=p1->next;
p2=p2->next->next;
}
else
return 0;
}
while(p1!=p2);
/*求出环的起点节点,并将其返回*/
p2=m_pNodeHead;
while(p1!=p2)
{
p1=p1->next;
p2=p2->next;
}
int i;
p2=m_pNodeHead;
for(i=1;i<=m_nCount;i++)
{
if(p1==p2) break;
p2=p2->next;
}
return i;
}
/*判断两个链表是否交叉,如果交叉返回首个交叉节点位置(在本链表中的位置,而不是testlist中的位置),否则返回0。
假定:这两个链表本身均无环*/
template<typename T>
inline int SList<T>::FindCross(SList& testlist)
{
if(0==m_nCount||0==testlist.m_nCount)
{
return 0;
}
if(FindCircle()||testlist.FindCircle())
{
return 0;
}
/*将第二个链表接在第一个链表后面*/
Node<T>* pTail=m_pNodeHead;
for(int i=1;i<m_nCount;i++)
{
pTail=pTail->next;
}
pTail=testlist.m_pNodeHead;
m_nCount+=testlist.m_nCount;
int i=FindCircle();
pTail=NULL;
m_nCount-=testlist.m_nCount;
return i;
}
#endif