HDOJ 1536 S-Nim SG函数求法

本文介绍了S-Nim游戏的规则及其策略,通过计算SG函数找出游戏的最佳移动方式。提供了两种实现方法,一种是预计算所有可能的SG值,另一种是使用递归按需计算SG值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4040    Accepted Submission(s): 1744


Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:


  The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

  The players take turns chosing a heap and removing a positive number of beads from it.

  The first player not able to make a move, loses.


Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:


  Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

  If the xor-sum is 0, too bad, you will lose.

  Otherwise, move such that the xor-sum becomes 0. This is always possible.


It is quite easy to convince oneself that this works. Consider these facts:

  The player that takes the last bead wins.

  After the winning player's last move the xor-sum will be 0.

  The xor-sum will change after every move.


Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win. 

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it? 

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
 

Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 

Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.
 

Sample Input
  
2 2 5 3 2 5 12 3 2 4 7 4 2 3 7 12 5 1 2 3 4 5 3 2 5 12 3 2 4 7 4 2 3 7 12 0
 

Sample Output
  
LWW WWL
 

Source
 

Recommend
LL   |   We have carefully selected several similar problems for you:   1404  1517  1524  1729  1079 
 

第二道SG函数练手题 ^_^

我首先自己写了个求SG函数的代码,把所有可能的取值都算了。TLE后把一个数组改小(一开始没理解SG函数求法,100就够的数组开到了10000)后AC。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

int m,n,p;
int k[100],sg[10100];

int main()
{
	int i,j;
	while (cin>>m && m){
		for (i=0;i<m;++i)
			cin>>k[i];
		sort(k,k+i);
		k[m]=0x3f3f3f3f;
		memset(sg,0,sizeof(sg));
		for (i=1;i<=10100;++i){
			int f[101]={0}; //f[10100]={0}; TLE
			for (j=0;k[j]<=i;++j)
				f[sg[i-k[j]]]=1;
			for (j=0;f[j];++j);
			sg[i]=j;
		}
	
		cin>>m;
		while (m--){
			cin>>n; j=0;
			while (n--){
				cin>>i;
				j^=sg[i];
			}
			if (j) cout<<'W';
			else cout<<'L';
		}
		cout<<endl;
	}
	return 0;
}

第一次TLE以后以为是SG函数有更优化的求法,于是去百度。发现别人的题解。仅仅是用到哪个数求哪个数的SG值,利用递归,代码非常巧妙。我一开始没有想到递归的解法。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

int m,n,p;
int k[100],sg[10100];

int mex(int n){
	int i;
	bool g[101]={0};
	for (i=0;n-k[i]>=0;++i){
		if (sg[n-k[i]]==-1)
			sg[n-k[i]]=mex(n-k[i]);
		g[sg[n-k[i]]]=1;
	}
	for (i=0;g[i];++i);
	return i;
}

int main()
{
	int i,j;
	while (cin>>m && m){
		for (i=0;i<m;++i)
			cin>>k[i];
		sort(k,k+i);
		k[m]=0x3f3f3f3f;
		memset(sg,-1,sizeof(sg));
		cin>>m;
		while (m--){
			cin>>n; j=0;
			while (n--){
				cin>>i;
				if (sg[i]==-1) 
					sg[i]=mex(i);
				j^=sg[i];
			}
			if (j) cout<<'W';
			else cout<<'L';
		}
		cout<<endl;
	}
	return 0;
}



效率方面,首先无视最早的那个TLE +_+
即使第二种解法有着递归调用时间的开支,时间上还是比第一种更优。但是差距并不明显( 说不定600ms主要是cin耗时? 已证实加优化后变为140ms)

kdwycz的网站:  http://kdwycz.com/

kdwyz的刷题空间:http://blog.youkuaiyun.com/kdwycz


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值