P29.完整的模型训练套路(三)
- training start
tudui.train()
train(mode=True)
Sets the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout,
BatchNorm, etc.
- testing start
tudui.eval()
eval()
Sets the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout,
BatchNorm, etc.
- 步骤
准备数据集
利用DataLoader加载数据集
创建网络模型
损失函数
优化器
设置训练网络的一些参数(训练次数、测试次数、训练轮数、tensorboard)
训练步骤开始(tudui.train(),从dataloader中取数据,计算误差,优化器优化模型,展示输出)
测试步骤开始(tudui.eval(),with torch.no_grad()只需要测试,不需要使用梯度调整,从dataloader中取数据,计算误差,设置并展示指标,保存模型)
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from P27_model import *
# prepare dataset
train_data = torchvision.datasets.CIFAR10(root="dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# length
train_data_size = len(train_data)
test_data_size = len(test_data)
# if train_data_size=10,The length of train dataset is 10
print("The length of train dataset is:{}".format(train_data_size))
print("The length of test dataset is:{}".format(test_data_size))
# load dataset with DataLoder
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# build a network model
tudui = Tudui()
# loss function
loss_fn = nn.CrossEntropyLoss()
# optimizer
# learning_rate = 0.01
# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
# set some parameters of training network
# record the number of training
total_train_step = 0
# record the number of testing
total_test_step = 0
# number of training rounds
epoch = 10
# add tensorboard
writer = SummaryWriter("logs_train")
for i in range(epoch):
print("------The {} round training start------".format(i+1))
# training start
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
# use optimizer to optimize the model
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("training round:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# testing start
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("The total loss on testing:{}".format(total_test_loss))
print("The accuracy of testing:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "tudui_{}.pth".format(i))
# torch.save(tudui.state_dict(), "tudui_{}.pth".format(i))
print("model saved")
writer.close()
该博客介绍了使用PyTorch进行深度学习模型训练和测试的完整流程。首先,通过DataLoader加载CIFAR10数据集,然后创建网络模型,定义损失函数(CrossEntropyLoss)和优化器(SGD)。在训练阶段,利用tudui.train()进入训练模式,进行前向传播、计算损失、反向传播和优化。在测试阶段,通过tudui.eval()进入评估模式,计算测试集上的损失和精度。整个过程记录了训练和测试的指标,并在每个训练轮结束后保存模型。
392

被折叠的 条评论
为什么被折叠?



