应用矩阵连乘求斐波那契的后几位数的典型题目
#include <iostream>
#include <cstdio>
using namespace std;
#define MAX 2
#define Mod 10000
typedef struct
{
int m[MAX][MAX];
}Matrix;
Matrix P={0,1,1,1};
Matrix I={1,0,0,1};
Matrix matrixmul(Matrix a,Matrix b) //矩阵乘法
{
int i,j,k;
Matrix c;
for (i = 0 ; i < MAX; i++)
for (j = 0; j < MAX;j++)
{
c.m[i][j] = 0;
for (k = 0; k < MAX; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j])%Mod;
c.m[i][j] %= Mod;
}
return c;
}
Matrix quickpow(long long n)
{
Matrix m = P, b = I;
while (n >= 1)
{
if (n & 1)
b = matrixmul(b,m);
n = n >> 1;
m = matrixmul(m,m);
}
return b;
}
int main()
{
long long n;
while(scanf("%lld",&n)!=EOF)
{
if(n==-1)
break;
Matrix d;
d=quickpow(n);
cout<<d.m[0][1]<<endl;
}
return 0;
}