This is a simple problem. Given two triangles A and B, you should determine they are intersect, contain or disjoint. (Public edge or point are treated as intersect.)
First line contains an integer T (1 ≤ T ≤ 10), represents there are T test cases.
For each test case: X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6. All the coordinate are integer. (X1,Y1) , (X2,Y2), (X3,Y3) forms triangles A ; (X4,Y4) , (X5,Y5), (X6,Y6) forms triangles B.
-10000<=All the coordinate <=10000
For each test case, output “intersect”, “contain” or “disjoint”.
2 0 0 0 1 1 0 10 10 9 9 9 10 0 0 1 1 1 0 0 0 1 1 0 1
disjoint intersect
思路:先判断是否相交,这里是通过 判断任意两条线段的是否存在交点来确定是否相交的;以为两个三角形相交的话,只要判断存在两条线段相交即可;
包含的话是通过面积有判断的, 因为如果是包含关系的话,就可以由 被包含的三角形的三个顶点 来计算另一个三角形(s2)的面积,三个顶点全部计算一边,如果都和另一个三角形(s2)相等的话,就是包含关系;
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{
double x,y;
} f[6];
double s0;
node jiaodian(node x1,node x2,node x3,node x4)//求任意两线段的交点(当然这两条线段必须是属于不同的三角形)
{
double k1,k2;
if(x1.x==x2.x)
k1=0;
else
k1=(x1.y-x2.y)/(x1.x-x2.x);
if(x3.x==x4.x)
k2=0;
else
k2=(x3.y-x4.y)/(x3.x-x4.x);
node dian;
if(k1==k2)
{
dian.x=99999;
dian.y=99999;
return dian;
}
double a=x1.y-k1*x1.x;
double b=x3.y-k2*x3.x;
dian.x=(b-a)/(k1-k2);
dian.y=k1*dian.x+a;
return dian;
}
int A(node x1,node x2,node x3,node x4)//由三点求三角形面积
{
double s1,s2,s3;
s1=fabs((x1.x*x2.y+x2.x*x4.y+x4.x*x1.y-x1.y*x2.x-x2.y*x4.x-x4.y*x1.x)/2.0);
s2=fabs((x1.x*x3.y+x3.x*x4.y+x4.x*x1.y-x1.y*x3.x-x3.y*x4.x-x4.y*x1.x)/2.0);
s3=fabs((x3.x*x2.y+x2.x*x4.y+x4.x*x3.y-x3.y*x2.x-x2.y*x4.x-x4.y*x3.x)/2.0);
if(fabs(s1+s2+s3-s0)<=0.000001)
return 1;
else
return 0;
}
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
node q;
int xj=0,xl=0,bh=0;
for(int i=0; i<6; i++)
scanf("%lf %lf",&f[i].x,&f[i].y);
for(int i=0; i<2; i++)
{
for(int l=i+1; l<3; l++)
{
for(int j=3; j<5; j++)
{
for(int h=j+1; h<6; h++)
{
q=jiaodian(f[i],f[l],f[j],f[h]);
if(q.x>=max(min(f[i].x,f[l].x),min(f[j].x,f[h].x))&&q.x<=min(max(f[i].x,f[l].x),max(f[j].x,f[h].x))&&
(q.y>=max(min(f[i].y,f[l].y),min(f[j].y,f[h].y))&&q.y<=min(max(f[i].y,f[l].y),max(f[j].y,f[h].y))))
{
xj=1;
break;
}
}
if(xj)
break;
}
if(xj)
break;
}
if(xj)
break;
}
if(xj)
{
printf("intersect\n");
continue;
}
int ans=0;
s0=fabs((f[0].x*f[1].y+f[1].x*f[2].y+f[2].x*f[0].y-f[0].y*f[1].x-f[1].y*f[2].x-f[2].y*f[0].x)/2.0);
for(int i=3; i<6; i++)
{
if(A(f[0],f[1],f[2],f[i]))
{
ans++;
}
}
if(ans==3)
bh=1;
if(bh)
printf("contain\n");
else
printf("disjoint\n");
}
return 0;
}