优先级队列-转载

优先队列:顾名思义,首先它是一个队列,但是它强调了“优先”二字,所以,已经不能算是一般意义上的队列了,它的“优先”意指取队首元素时,有一定的选择性,即根据元素的属性选择某一项值最优的出队~
百度百科上这样描述的:
  优先级队列 是不同于先进先出队列的另一种队列。每次从队列中取出的是具有最高优先权的元素
  优先队列的类定义  
  优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找;2) 插入一个新元素;3) 删除.在最小优先队列(min priorityq u e u e)中,查找操作用来搜索优先权最小的元素,删除操作用来删除该元素;对于最大优先队列(max priority queue),查找操作用来搜索优先权最大的元素,删除操作用来删除该元素.优先权队列中的元素可以有相同的优先权,查找与删除操作可根据任意优先权进行.
优先队列,其构造及具体实现我们可以先不用深究,我们现在只需要了解其特性,及在做题中的用法,相信,看过之后你会收获不少。
使用优先队列,首先要包函STL头文件"queue",
以一个例子来解释吧(呃,写完才发现,这个代码包函了几乎所有我们要用到的用法,仔细看看吧):
view plaincopy to clipboardprint?
/*优先队列的基本使用    2010/7/24    dooder*/ 
#include<stdio.h> 
#include<functional> 
#include<queue> 
#include<vector> 
using namespace std; 
//定义结构,使用运算符重载,自定义优先级1 
struct cmp1{ 
    bool operator ()(int &a,int &b){ 
        return a>b;//最小值优先 
    } 
}; 
struct cmp2{ 
    bool operator ()(int &a,int &b){ 
        return a<b;//最大值优先 
    } 
}; 
//定义结构,使用运算符重载,自定义优先级2 
struct number1{ 
    int x; 
    bool operator < (const number1 &a) const { 
        return x>a.x;//最小值优先 
    } 
}; 
struct number2{ 
    int x; 
    bool operator < (const number2 &a) const { 
        return x<a.x;//最大值优先 
    } 
}; 
int a[]={14,10,56,7,83,22,36,91,3,47,72,0}; 
number1 num1[]={14,10,56,7,83,22,36,91,3,47,72,0}; 
number2 num2[]={14,10,56,7,83,22,36,91,3,47,72,0}; 
 
int main() 
{   priority_queue<int>que;//采用默认优先级构造队列 
 
    priority_queue<int,vector<int>,cmp1>que1;//最小值优先 
    priority_queue<int,vector<int>,cmp2>que2;//最大值优先 
 
    priority_queue<int,vector<int>,greater<int> >que3;//注意“>>”会被认为错误, 
                                                      //这是右移运算符,所以这里用空格号隔开 
    priority_queue<int,vector<int>,less<int> >que4;////最大值优先 
 
    priority_queue<number1>que5; 
    priority_queue<number2>que6; 
 
    int i; 
    for(i=0;a[i];i++){ 
        que.push(a[i]); 
        que1.push(a[i]); 
        que2.push(a[i]); 
        que3.push(a[i]); 
        que4.push(a[i]); 
    } 
    for(i=0;num1[i].x;i++) 
        que5.push(num1[i]); 
    for(i=0;num2[i].x;i++) 
        que6.push(num2[i]); 
 
 
    printf("采用默认优先关系:\n(priority_queue<int>que;)\n"); 
    printf("Queue 0:\n"); 
    while(!que.empty()){ 
        printf("%3d",que.top()); 
        que.pop(); 
    } 
    puts(""); 
    puts(""); 
 
    printf("采用结构体自定义优先级方式一:\n(priority_queue<int,vector<int>,cmp>que;)\n"); 
    printf("Queue 1:\n"); 
    while(!que1.empty()){ 
        printf("%3d",que1.top()); 
        que1.pop(); 
    } 
    puts(""); 
    printf("Queue 2:\n"); 
    while(!que2.empty()){ 
        printf("%3d",que2.top()); 
        que2.pop(); 
    } 
    puts(""); 
    puts(""); 
    printf("采用头文件\"functional\"内定义优先级:\n(priority_queue<int,vector<int>,greater<int>/less<int> >que;)\n"); 
    printf("Queue 3:\n"); 
    while(!que3.empty()){ 
        printf("%3d",que3.top()); 
        que3.pop(); 
    } 
    puts(""); 
    printf("Queue 4:\n"); 
    while(!que4.empty()){ 
        printf("%3d",que4.top()); 
        que4.pop(); 
    } 
    puts(""); 
    puts(""); 
    printf("采用结构体自定义优先级方式二:\n(priority_queue<number>que)\n"); 
    printf("Queue 5:\n"); 
    while(!que5.empty()){ 
        printf("%3d",que5.top()); 
        que5.pop(); 
    } 
    puts(""); 
    printf("Queue 6:\n"); 
    while(!que6.empty()){ 
        printf("%3d",que6.top()); 
        que6.pop(); 
    } 
    puts(""); 
    return 0; 

/*
运行结果 :
采用默认优先关系:
(priority_queue<int>que;)
Queue 0:
83 72 56 47 36 22 14 10  7  3
 
采用结构体自定义优先级方式一:
(priority_queue<int,vector<int>,cmp>que;)
Queue 1:
 7 10 14 22 36 47 56 72 83 91
Queue 2:
83 72 56 47 36 22 14 10  7  3
 
采用头文件"functional"内定义优先级:
(priority_queue<int,vector<int>,greater<int>/less<int> >que;)
Queue 3:
 7 10 14 22 36 47 56 72 83 91
Queue 4:
83 72 56 47 36 22 14 10  7  3
 
采用结构体自定义优先级方式二:
(priority_queue<number>que)
Queue 5:
 7 10 14 22 36 47 56 72 83 91
Queue 6:
83 72 56 47 36 22 14 10  7  3
*/ 
运行结果:
采用默认优先关系:
(priority_queue<int>que;)
Queue 0:
83 72 56 47 36 22 14 10  7  3
采用结构体自定义优先级方式一:
(priority_queue<int,vector<int>,cmp>que;)
Queue 1:
 7 10 14 22 36 47 56 72 83 91
Queue 2:
83 72 56 47 36 22 14 10  7  3
采用头文件"functional"内定义优先级:
(priority_queue<int,vector<int>,greater<int>/less<int> >que;)
Queue 3:
 7 10 14 22 36 47 56 72 83 91
Queue 4:
83 72 56 47 36 22 14 10  7  3
采用结构体自定义优先级方式二:
(priority_queue<number>que)
Queue 5:
 7 10 14 22 36 47 56 72 83 91
Queue 6:
83 72 56 47 36 22 14 10  7  3
好了,如果你仔细看完了上面的代码,那么你就可以基本使用优先队列了,下面给出一些我做题中有过的一些应用,希望能给大家带来一些启
示~
1、先来一个我们最近做的题吧,http://acm.hdu.edu.cn/showproblem.php?pid=1242
题意:某人被关在囚笼里等待朋友解救,问能否解救成功,最少需要多少时间~
具体:可同时有几个朋友,每走一格消耗一分钟的时间 ,地图上还存在着卫兵,卫兵可以解决掉,但是要另外花费一分钟~
分析:从“a”出发,此题可以用回溯法进行深搜,但那样做的话,效率还是不能让人满意,但是广搜的话,由于入队后每次出队时,根据地
图情况的不同,出队元素所记忆的时间并不是层次递增的,因此使用简单广搜的话,同样需要全部搜索才能找到正确答案。有没有一种方法能
让某一步因为遇到士兵而多花时间的结点在队列中向后推迟一层出队呢?答案是肯定的,在这里我们可以用优先队列来实现,总体思想上是,
根据时间进行优先性选择,每次都要出队当前队列元素中记录时间最少的出队,而入队处理时,我们可以按顺序对四个方向上的各种情况按正
常处理入队就行了,出队顺序由优先队列根据预设优先性自动控制。这样,我们就可以从“a”进行基于优先队列的范围搜索了,并且在第一
次抵达有朋友的位置时得到正确结果~具体实现代码:
view plaincopy to clipboardprint?
/*HDU 1242  基于优先队列的范围搜索,16ms   dooder*/ 
 
#include<stdio.h> 
#include<queue> 
using namespace std; 
 
#define M 201 
typedef struct p{ 
    int x,y,t; 
    bool operator < (const p &a)const 
    { 
        return t>a.t;//取时间最少优先 
    } 
}Point; 
 
char map[M][M]; 
Point start; 
int n,m; 
int dir[][2]={{1,0},{-1,0},{0,1},{0,-1}}; 
 
int bfs() 

    priority_queue<Point>que; 
    Point cur,next; 
    int i; 
 
    map[start.x][start.y]='#'; 
    que.push(start); 
    while(!que.empty()){ 
        cur=que.top();//由优先队列自动完成出队时间最少的元素 
        que.pop(); 
        for(i=0;i<4;i++){ 
            next.x=cur.x+dir[i][0]; 
            next.y=cur.y+dir[i][1]; 
            next.t=cur.t+1; 
            if(next.x<0||next.x>=n||next.y<0||next.y>=m) 
                continue; 
            if(map[next.x][next.y]=='#') 
                continue; 
            if(map[next.x][next.y]=='r') 
                return next.t; 
            if(map[next.x][next.y]=='.'){ 
                map[next.x][next.y]='#'; 
                que.push(next); 
            } 
            else if(map[next.x][next.y]=='x'){ 
                map[next.x][next.y]='#'; 
                next.t++; 
                que.push(next); 
            } 
        } 
    } 
    return -1; 

int main() 

    int i,ans; 
    char *p; 
    while(scanf("%d%d",&n,&m)!=-1){ 
        for(i=0;i<n;i++){ 
            scanf("%s",map[i]); 
            if(p=strchr(map[i],'a')){ 
                start.x=i; 
                start.y=p-map[i]; 
                start.t=0; 
            } 
        } 
        ans=bfs(); 
        printf(ans+1?"%d\n":"Poor ANGEL has to stay in the prison all his life.\n",ans); 
    } 
    return 0; 

2、http://acm.hdu.edu.cn/showproblem.php?pid=1053
题意:给出一行字符串,求出其原编码需要的编码长度和哈夫曼编码所需的长度,并求其比值
分析:根据哈夫曼生成树的生成过程可知,其生成树的权值是固定的而且这个值是最小的,而且其值根据生成树的顺序,我们可以找出规律而
不需要真的去生成一棵树然后再求出权值,其模拟过程为取出队列中权值最小的两个元素,将其值加入结果中,然后将这两个元素的权值求和
即得出其父节点的权值,将生成元素作为结点入队~~如此循环,直至取出队列中最后两个元素加入结果,实现代码如下:
view plaincopy to clipboardprint?
/*HDU 1053  采用广搜求哈夫曼生成树的权值 0ms   dooder*/ 
#include<stdio.h> 
#include<string.h> 
#include<ctype.h> 
#include<functional> 
#include<queue> 
using namespace std; 
#define M 1000050 
char str[M]; 
int list[27]; 
 
priority_queue< int,vector<int>,greater<int> >que; 
 
int main() 

    int ans,sum; 
    int i,a,b,c; 
    while(scanf("%s",str),strcmp(str,"END")){ 
        memset(list,0,sizeof(list)); 
        for(i=0;str[i];i++){ 
            if(isalpha(str[i])) 
                list[str[i]-'A']++; 
            else 
                list[26]++; 
        } 
        sum=i*8;ans=i;c=0; 
        for(i=0;i<27;i++){ 
            if(list[i]){ 
                que.push(list[i]); 
                c++; 
            } 
        }        
        if(c>1){ans=0;//注意只有一种字符的情况 
            while(que.size()!=1){ 
                a=que.top(); 
                que.pop(); 
                b=que.top(); 
                que.pop(); 
                ans+=a+b; 
                que.push(a+b); 
            } 
            while(!que.empty())//使用后清空队列 
                que.pop(); 
        } 
        printf("%d %d %.1f\n",sum,ans,1.0*sum/ans); 
    } 
    return 0; 

3、http://acm.pku.edu.cn/JudgeOnline/problem?id=2263
这是第二次练习赛时,我们做过的最后一题,这里采用优先队列进行实现,在《谁说不能这样做题》中已提到这种方法,在这里再次放出代
码,~
题意:给出各城市间道路的限制载重量,求出从一个城市到另外一个城市的贷车能够运载的最大货物重量。
分析:采用优先队列,每次取出当前队列中结点的minheavy最大值出队,对它的连接结点搜索入队,这样,从出发点开始就可以
在到达终点时求出结果,即最大载货物重,实现代码如下:
view plaincopy to clipboardprint?
/*POJ 2263  16ms  dooder*/ 
 
#include<stdio.h> 
#include<string.h> 
#include<queue> 
using namespace std; 
#define M 201 
typedef struct w{ 
    int city; 
    int mintons; 
    bool operator < (const w &a)const { 
        return mintons < a.mintons; 
    }//优先性定义 
}Way; 
char citys[M][31]; 
int map[M][M]; 
bool mark[M][M]; 
int n,m,from,to,ans,k; 
priority_queue <Way> que; 
int min(int a,int b) 

    return a>b?b:a; 

void bfs() 

    Way cur,next; 
    int i; 
    while(!que.empty()){ 
        cur=que.top(); 
        que.pop(); 
        if(cur.city==to){ 
            if(cur.mintons>ans) 
                ans=cur.mintons; 
            while(!que.empty()) 
                que.pop(); 
            return ; 
        } 
        for(i=0;i<n;i++){ 
            if(map[cur.city][i]&&!mark[cur.city][i]){ 
                next.city=i; 
                next.mintons=min(cur.mintons,map[cur.city][i]); 
 
                mark[cur.city][i]=mark[i][cur.city]=1; 
                que.push(next); 
            } 
        } 
    } 

void run() 

    int i,temp,index; 
    Way cur; 
    ans=0; 
    memset(mark,0,sizeof(mark)); 
    temp=0; 
    for(i=0;i<n;i++){ 
        if(map[from][i]>temp){ 
            temp=map[from][i]; 
            index=i; 
        } 
    } 
    cur.city=index; 
    cur.mintons=temp; 
    que.push(cur); 
    bfs(); 

int main() 

    int k1,k2,tons,t=1; 
    char s1[31],s2[31]; 
    while(scanf("%d%d",&n,&m),n||m){ 
        k=0; 
        while(m--){ 
            scanf("%s%s%d",s1,s2,&tons); 
            for(k1=0;strcmp(s1,citys[k1])&&k1<k;k1++); 
            if(k1==k) 
                strcpy(citys[k++],s1); 
            for(k2=0;strcmp(s2,citys[k2])&&k2<k;k2++); 
            if(k2==k) 
                strcpy(citys[k++],s2); 
            map[k1][k2]=map[k2][k1]=tons; 
        } 
        scanf("%s%s",s1,s2); 
        for(from=0;strcmp(citys[from],s1);from++); 
        for(to=0;strcmp(citys[to],s2);to++); 
        run(); 
        printf("Scenario #%d\n",t++); 
        printf("%d tons\n\n",ans); 
    } 
    return 0; 

当然了,优先队列的用法决不是仅仅提到的这些,各种应用还需要大家去发现,给道题大家可以练习一下hdu 2066\
相信大家已经学到不少了,还有一点可以告诉大家,优先队列是启发式搜索的数据结构基础,希望好好理解,并逐步掌握其用法~
 加:失策啊,竟然忘了说优先队列的效率了,其时间复杂度为O(logn).n为队列中元素的个数,存取都需要消耗时间~
队列是为了任务与任务、任务与中断之间的通信而准备的,可以在任务与任务、任务与中 断之间传递消息,队列中可以存储有限的、大小固定的数据项目。任务与任务、任务与中断之 间要交流的数据保存在队列中,叫做队列项目。队列所能保存的最大数据项目数量叫做队列的 长度,创建队列的时候会指定数据项目的大小和队列的长度。由于队列用来传递消息的,所以 也称为消息队列。FreeRTOS 中的信号量的也是依据队列实现的!所以有必要深入的了解 FreeRTOS 的队列。 1、数据存储 通常队列采用先进先出(FIFO)的存储缓冲机制,也就是往队列发送数据的时候(也叫入队)永 远都是发送到队列的尾部,而从队列提取数据的时候(也叫出队)是从队列的头部提取的。但是 也可以使用 LIFO 的存储缓冲,也就是后进先出,FreeRTOS 中的队列也提供了 LIFO 的存储缓 冲机制。 数据发送到队列中会导致数据拷贝,也就是将要发送的数据拷贝到队列中,这就意味着在 队列中存储的是数据的原始值,而不是原数据的引用(即只传递数据的指针),这个也叫做值传 递。学过 UCOS 的同学应该知道,UCOS 的消息队列采用的是引用传递,传递的是消息指针。 采用引用传递的话消息内容就必须一直保持可见性,也就是消息内容必须有效,那么局部变量 这种可能会随时被删掉的东西就不能用来传递消息,但是采用引用传递会节省时间啊!因为不 用进行数据拷贝。 采用值传递的话虽然会导致数据拷贝,会浪费一点时间,但是一旦将消息发送到队列中原 始的数据缓冲区就可以删除掉或者覆写,这样的话这些缓冲区就可以被重复的使用。FreeRTOS 中使用队列传递消息的话虽然使用的是数据拷贝,但是也可以使用引用来传递消息啊,我直接 往队列中发送指向这个消息的地址指针不就可以了!这样当我要发送的消息数据太大的时候就 可以直接发送消息缓冲区的地址指针,比如在网络应用环境中,网络的数据量往往都很大的, 采用数据拷贝的话就不现实。 2、多任务访问 队列不是属于某个特别指定的任务的,任何任务都可以向队列中发送消息,或者从队列中 提取消息。 3、出队阻塞 当任务尝试从一个队列中读取消息的时候可以指定一个阻塞时间,这个阻塞时间就是当任 务从队列中读取消息无效的时候任务阻塞的时间。出队就是就从队列中读取消息,出队阻塞是 针对从队列中读取消息的任务而言的。比如任务 A 用于处理串口接收到的数据,串口接收到数 据以后就会放到队列 Q 中,任务 A 从队列 Q 中读取数据。但是如果此时队列 Q 是空的,说明 还没有数据,任务 A 这时候来读取的话肯定是获取不到任何东西,那该怎么办呢?任务 A 现在 有三种选择,一:二话不说扭头就走,二:要不我在等等吧,等一会看看,说不定一会就有数 据了,三:死等,死也要等到你有数据!选哪一个就是由这个阻塞时间决定的,这个阻塞时间 单位是时钟节拍数。阻塞时间为 0 的话就是不阻塞,没有数据的话就马上返回任务继续执行接 下来的代码,对应第一种选择。如果阻塞时间为 0~ portMAX_DELAY,当任务没有从队列中获 取到消息的话就进入阻塞态,阻塞时间指定了任务进入阻塞态的时间,当阻塞时间到了以后还 没有接收到数据的话就退出阻塞态,返回任务接着运行下面的代码,如果在阻塞时间内接收到 了数据就立即返回,执行任务中下面的代码,这种情况对应第二种选择。当阻塞时间设置为 portMAX_DELAY 的话,任务就会一直进入阻塞态等待,直到接收到数据为止!这个就是第三种选择。 4、入队阻塞 入队说的是向队列中发送消息,将消息加入到队列中。和出队阻塞一样,当一个任务向队 列发送消息的话也可以设置阻塞时间。比如任务 B 向消息队列 Q 发送消息,但是此时队列 Q 是 满的,那肯定是发送失败的。此时任务 B 就会遇到和上面任务 A 一样的问题,这两种情况的处 理过程是类似的,只不过一个是向队列 Q 发送消息,一个是从队列 Q 读取消息而已。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.youkuaiyun.com/qq_61672347/article/details/125568639
最新发布
08-17
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值