Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
将word1转换成word2,要求只能通过替换字符,删除字符和插入字符,求最少的操作数。用动态规划的方法。用二维向量dp保存动态规划的更新状态,dp[i][j]代表word1的前i个字符到word2的前j个字符的变换情况(最优的)。如果word1的第i个字符和word2的第j个字符一样,则现在不用操作,即dp[i][j]=dp[i-1][j-1];如果不一样,可以通过删除word1的第i个字符(操作数等于dp[i-1][j]+1),在word1增加一个字符(操作数等于dp[i][j-1]+1)和替换一个字符(操作数等于dp[i-1][j-1]+1),所以dp[i][j]等于其中最小的一个。最后结果就在dp[m][n]。
代码:
class Solution
{
public:
int minDistance(string word1, string word2)
{
int m = word1.size(), n = word2.size();
vector<vector<int> > dp(m + 1, vector<int>(n + 1, 0));
for(int i = 0; i <= m; ++i)
{
dp[i][0] = i;
}
for(int i = 0; i <= n; ++i)
{
dp[0][i] = i;
}
for(int i = 1; i <= m; ++i)
{
for(int j = 1; j <= n; ++j)
{
if(word1[i - 1] == word2[j - 1])
{
dp[i][j] = dp[i - 1][j - 1];
}
else
{
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[m][n];
}
};