Latex 设置字体大小命令由小到大依次为:
\tiny
\scriptsize
\footnotesize
\small
\normalsize
\large
\Large
\LARGE
\huge
\Huge
点击“view plain”查看源码
\( \tiny 1-AABBCC \)
\( \scriptsize 2-AABBCC \)
\( \footnotesize 3-AABBCC \)
\( \small 4-AABBCC \)
\( \normalsize 5-AABBCC \)
\( \large 6-AABBCC \)
\( \Large 7-AABBCC \)
\( \LARGE 8-AABBCC \)
\( \huge 9-AABBCC \)
\( \Huge 10-AABBCC \)
希腊字母:
\(\LARGE \alpha \,\, \beta \,\, \gamma \,\, \delta \,\, \epsilon \,\, \varepsilon \,\, \zeta \,\, \eta \)
\(\LARGE \theta \,\, \vartheta \,\, \iota \,\, \kappa \,\, \lambda \,\, \mu \,\, \nu \,\, \xi \)
\(\LARGE \pi \,\, \varpi \,\, \rho \,\, \varrho \,\, \sigma \,\, \varsigma \,\, \tau \,\, \upsilon \)
\(\LARGE \phi \,\, \varphi \,\, \chi \,\, \psi \,\, \omega \)
\( \LARGE \leq \,\, \geq \,\, \neq \,\, \nless \,\, \ngtr \)
\( \LARGE \pm \,\, \cap \,\, \cup \,\, \cdot \,\, \bigtriangleup \,\, \bigtriangledown \)
\( \LARGE \therefore \,\, \because \,\, \forall \,\, \exists \,\, \partial \)
\( \LARGE \subset \,\, \supset \,\, \subseteq \,\, \supseteq \,\, \nsubseteq \,\, \nsupseteq \,\, \in \,\, \ni \,\, \notin \)
\( \LARGE \hat{a} \,\, \check{a} \,\, \tilde{a} \,\, \breve{a} \,\, \bar{a} \,\, \vec{a} \)
\( \LARGE x \mapsto x^2 \,\,\, a\to \,\, \leftarrow \,\, \rightarrow \,\, \Leftarrow \,\, \Rightarrow \)
\( \Large \left \{ 12 \right \} \,\, \left ( 12 \right ) \,\, \left [ 12\right ] \,\, \left \| 12\right \| \,\, \left | 12\right |\)
\( \begin{Bmatrix} 1 & 2\\ 3 & 4 \end{Bmatrix} \begin{pmatrix} 1 & 2\\ 3 & 4 \end{pmatrix} \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix} \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} \)
\( \left\{\begin{matrix} 1 & 2\\ 3 & 4 \end{matrix}\right. \)
\( \LARGE \frac{1}{n} \sum_{i=1}^{n} {X_i}^2 \)
\( \LARGE \prod_{i=1}^{n} X_i\)
\( \LARGE \int_{0}^{n} x dx\)
\( \huge f_x (x,y) = \frac {\partial f(x,y)}{\partial x} \)
\( \LARGE \bigcup_{i=1}^{n}{X_i} \,\,\,\bigcap_{i=1}^{n}{X_i}\)
\( \LARGE \sqrt{x} \,\, \sqrt[3]{x} \)
\( \LARGE f(x) = \frac{1 }{ \sqrt{2\pi} \rho} exp[ - \frac{(x-\mu)^2 }{2\rho^2} ] \)
\( \LARGE f(x) = \frac{1 }{ (2 \pi)^{n/2} |\sum|^{1/2}} exp[ -\frac{1}{2} (x-\mu)^T [\sum(x-\mu)]^{-1} ] \)
\( \LARGE 均值矢量: \mu = E(x)\)
\( \LARGE 自协矩阵:\sum = COV(x,x) = E[(x-\mu)(x-\mu)^T] = D(x)\)
http://doc.mbalib.com/view/b814ce3ae0fa50a0d8a93f1dff5e6baa.html