全流程基于GIS、Python机器学习技术的地质灾害风险评价、易发性分析与信息化建库及灾后重建中的实践应用

  地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害,具有类型多样、分布广泛、危害性大的特点。地质灾害危险性评价着重于根据多种影响因素和区域选择来评估在某个区域中某个阶段发生的地质灾害程度。以此预测和分析未来某个地形单位发生地质灾害的可能性。根据地质灾害的孕育和发展机理,现有的数据资料和技术,以及实际应用需要,评价目标和研究经费等因素,采用适当的方法,可通过模型评估并分析研究区域对地质灾害的危险性。那么如何深刻理解地灾危险性评价模型?如何高效处理好致灾因子数据?如何针对具体区域建立切实可行的地质灾害危险性评价与灾后重建方案?本课程将提供一套基于ArcGIS的方法和案例。

  GIS(Geographical Information System)——地理信息系统,是集地理、测绘、遥感和信息技术为一体,地理空间数据进行获取、管理、存储、显示、分析和模型化,以解决与空间位置有关的分析与管理问题。ArcGIS软件具有空间数据和属性数据的输入、编辑、查询、简单空间分析统计、输出、报表等功能,这为多源数据的有机整合提供了可能,也为建立灵活的分析模块提供了方便。空间分析功能是GIS得以广泛应用的重要原因之一。运用GIS分析技术,对各因素进行统计分析、信息叠加复合,研究地质灾害类型、分布规律级别和灾害损失度等,运用危险性指数等方法对地质灾害危险性现状评价与制图,将能使地质灾害风险评价更加效率化、科学化,为地质灾害数据库建设提供有力支撑。

  随着由遥感、地理信息系统和全球定位系统为代表的新型测绘技术的发展,地质灾害数据的质量和数量大幅提升。地质灾害数据具有多源性、时空性和非线性等特点,如何对这些海量数据进行准确且可靠的分析尤为重要。从当前的发展趋势来看,使用机器学习模型已经成为滑坡易发性区划的主流;深度学习作为当前人工智能领域的研究热点,能够从给定样本空间中学习到各种复杂的拟合函数,在广泛受到关注。

第一章、基本概念与平台讲解【基础篇】

1、基本概念

地质灾害类型

地质灾害发育特征与分布规律

地质灾害危害特征

地质灾害孕灾地质条件分析

地质灾害诱发因素与形成机理

图片

2、GIS原理与ArcGIS平台介绍

GIS简介

ArcGIS基础

空间数据采集与组织

空间参考

空间数据的转换与处理

ArcGIS中的数据编辑

地理数据的可视化表达

空间分析:

数字地形分析

叠置分析

距离制图

密度制图

统计分析

重分类

三维分析

图片

图片

第二章、空间信息数据库建设【基础篇】

空间数据库建立及应用

图片

1)地质灾害风险调查评价成果信息化技术相关要求解读

2)数学基础设计

比例尺;坐标系类型:地理坐标系,投影坐标系;椭球参数;投影类型;坐标单位;投影带类型等。

3)数据库内容及要素分层

图层划分原则;图层划分及命名;图层内部属性表

图片

4)数据库建立及入库

创建数据库、要素集、要素类、栅格数据和关系表等。

图片

矢量数据(shp文件)入库

Table表入库:将崩塌、滑坡、泥

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值