m20230317摄动求解.nb
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 22344, 772]
NotebookOptionsPosition[ 19560, 670]
NotebookOutlinePosition[ 19903, 685]
CellTagsIndexPosition[ 19860, 682]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", "\:6444\:52a8\:65b9\:6cd5\:6c42\:89e31", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\:63a7\:5236\:65b9\:7a0b", " ",
RowBox[{"V", "'"}],
RowBox[{"(", "t", ")"}]}], "+",
RowBox[{"V",
RowBox[{
RowBox[{"(", "t", ")"}], "^", "2"}]}]}], "=", "1"}], ",", " ",
RowBox[{"t", "\[GreaterEqual]", "0"}], ",", " ", "V90"}], ")"}], "=",
"0"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", "\:5047\:8bbe\:65f6\:95f4t\:4e3a\:5c0f\:53c2\:6570", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"V", "[", "t_", "]"}], "=",
RowBox[{"a0", "+",
RowBox[{"a1", "*", "t"}], "+",
RowBox[{"a2", "*",
RowBox[{"t", "^", "2"}]}], "+",
RowBox[{"a3", "*",
RowBox[{"t", "^", "3"}]}]}]}], " ", ";"}], "\[IndentingNewLine]",
RowBox[{"eq1", "=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[", "t", "]"}], ",", "t"}], "]"}], "+",
RowBox[{
RowBox[{"V", "[", "t", "]"}], "^", "2"}], "-", "1"}]}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.8879165881542664`*^9, 3.8879166453552375`*^9}, {
3.887916705789909*^9, 3.887916715456401*^9}, {3.8879168387143836`*^9,
3.8879171249355755`*^9}, 3.887917658286487*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+", "a1", "+",
RowBox[{"2", " ", "a2", " ", "t"}], "+",
RowBox[{"3", " ", "a3", " ",
SuperscriptBox["t", "2"]}], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{"a0", "+",
RowBox[{"a1", " ", "t"}], "+",
RowBox[{"a2", " ",
SuperscriptBox["t", "2"]}], "+",
RowBox[{"a3", " ",
SuperscriptBox["t", "3"]}]}], ")"}], "2"]}]], "Output",
CellChangeTimes->{{3.8879171211759424`*^9, 3.8879171259391828`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eq2", "=",
RowBox[{"eq1", "//", "Expand"}]}]], "Input",
CellChangeTimes->{{3.8879171335849524`*^9, 3.887917137492957*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["a0", "2"], "+", "a1", "+",
RowBox[{"2", " ", "a0", " ", "a1", " ", "t"}], "+",
RowBox[{"2", " ", "a2", " ", "t"}], "+",
RowBox[{
SuperscriptBox["a1", "2"], " ",
SuperscriptBox["t", "2"]}], "+",
RowBox[{"2", " ", "a0", " ", "a2", " ",
SuperscriptBox["t", "2"]}], "+",
RowBox[{"3", " ", "a3", " ",
SuperscriptBox["t", "2"]}], "+",
RowBox[{"2", " ", "a1", " ", "a2", " ",
SuperscriptBox["t", "3"]}], "+",
RowBox[{"2", " ", "a0", " ", "a3", " ",
SuperscriptBox["t", "3"]}], "+",
RowBox[{
SuperscriptBox["a2", "2"], " ",
SuperscriptBox["t", "4"]}], "+",
RowBox[{"2", " ", "a1", " ", "a3", " ",
SuperscriptBox["t", "4"]}], "+",
RowBox[{"2", " ", "a2", " ", "a3", " ",
SuperscriptBox["t", "5"]}], "+",
RowBox[{
SuperscriptBox["a3", "2"], " ",
SuperscriptBox["t", "6"]}]}]], "Output",
CellChangeTimes->{3.8879171381517763`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{
"\:5e38\:6570\:9879", " ",
"\:7531\:8fb9\:754c\:6761\:4ef6\:53ef\:77e5a0"}], "=", "0"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"a0", "=", "0"}], "\[IndentingNewLine]",
RowBox[{"Coeff0", "=",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["a0", "2"], "+", "a1"}]}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.8879172832241898`*^9, 3.8879173670465775`*^9}, {
3.8879174106756973`*^9, 3.887917414451993*^9}}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{{3.887917369523075*^9, 3.887917376936103*^9},
3.8879174158446712`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+", "a1"}]], "Output",
CellChangeTimes->{{3.887917369523075*^9, 3.887917376936103*^9},
3.8879174158446712`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"Coeff0", "\[Equal]", "0"}], ",", "a1"}], "]"}]], "Input",
CellChangeTimes->{{3.887917369523075*^9, 3.887917398290406*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"a1", "\[Rule]", "1"}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.8879173930173516`*^9, 3.8879174184361963`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coeff1", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",", "t"}], "]"}]}]], "Input",
CellChangeTimes->{{3.8879172141983013`*^9, 3.887917247853876*^9}, {
3.887917491583814*^9, 3.8879174934345255`*^9}}],
Cell[BoxData[
RowBox[{"2", " ", "a2"}]], "Output",
CellChangeTimes->{
3.887917248629033*^9, 3.8879174250210915`*^9, {3.887917466369867*^9,
3.887917495186999*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"Coeff1", "\[Equal]", "0"}], ",", "a2"}], "]"}]], "Input",
CellChangeTimes->{{3.8879175077510943`*^9, 3.8879175097726502`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"a2", "\[Rule]", "0"}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.8879175102738934`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coeff2", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",",
RowBox[{"t", "^", "2"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8879175218231554`*^9, 3.887917529671337*^9}}],
Cell[BoxData[
RowBox[{
SuperscriptBox["a1", "2"], "+",
RowBox[{"3", " ", "a3"}]}]], "Output",
CellChangeTimes->{3.8879175302181854`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"Coeff2", "\[Equal]", "0"}], ",", "a3"}], "]"}]], "Input",
CellChangeTimes->{{3.8879175444608164`*^9, 3.887917547282689*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"a3", "\[Rule]",
RowBox[{"-",
FractionBox[
SuperscriptBox["a1", "2"], "3"]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.887917547972303*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"V", "[", "t", "]"}], "=",
RowBox[{"1", "-",
RowBox[{
RowBox[{"1", "/", "3"}], "*",
RowBox[{"t", "^", "3"}]}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.887917567462616*^9, 3.887917594105048*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"(*", "\:6444\:52a8\:65b9\:6cd5\:6c42\:89e32", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\:63a7\:5236\:65b9\:7a0b", " ",
RowBox[{"V", "'"}],
RowBox[{"(", "t", ")"}]}], "+",
RowBox[{"V",
RowBox[{
RowBox[{"(", "t", ")"}], "^", "2"}]}]}], "=", "1"}], ",", " ",
RowBox[{"t", "\[GreaterEqual]", "0"}], ",", " ", "V90"}], ")"}], "=",
"0"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", "\:5f15\:5165\:5c0f\:53c2\:6570epsilon", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\:4ee4V", "[", "t", "]"}], "=",
RowBox[{"epsilon", "*",
RowBox[{"U", "[", "x", "]"}]}]}], ",", " ",
RowBox[{"x", "=",
RowBox[{
RowBox[{"epsilon", "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}], "*", "t"}]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{
3.887917656104933*^9, {3.887917688130855*^9, 3.8879177797678537`*^9}},
EmphasizeSyntaxErrors->True],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"V", "[", "t_", "]"}], "=",
RowBox[{
RowBox[{"epsilon", "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}], "*",
RowBox[{"U", "[", "x", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{"x", "=",
RowBox[{
RowBox[{"epsilon", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], ")"}]}], "t"}]}]}], "Input",
CellChangeTimes->{{3.887917784157449*^9, 3.887917822189766*^9}, {
3.8879178730351996`*^9, 3.8879178765310893`*^9}, {3.88791790739555*^9,
3.8879179497046103`*^9}, {3.887918002438507*^9, 3.8879180396031637`*^9}}],
Cell[BoxData[
RowBox[{
SqrtBox["epsilon"], " ",
RowBox[{"U", "[", "x", "]"}]}]], "Output",
CellChangeTimes->{{3.887917823451836*^9, 3.8879178398093147`*^9}, {
3.8879178784141836`*^9, 3.8879179571279163`*^9}, {3.8879180190582128`*^9,
3.887918048739741*^9}}],
Cell[BoxData[
FractionBox["t",
SqrtBox["epsilon"]]], "Output",
CellChangeTimes->{{3.887917823451836*^9, 3.8879178398093147`*^9}, {
3.8879178784141836`*^9, 3.8879179571279163`*^9}, {3.8879180190582128`*^9,
3.887918048739741*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.887917826117035*^9, 3.8879178271823874`*^9}, {
3.8879178895099277`*^9, 3.887917895876108*^9}, {3.8879179633987703`*^9,
3.887917997718776*^9}}],
Cell[BoxData[
RowBox[{
SuperscriptBox["U", "\[Prime]",
MultilineFunction->None], "[",
FractionBox["t",
SqrtBox["epsilon"]], "]"}]], "Output",
CellChangeTimes->{
3.88791799875134*^9, {3.8879180289922643`*^9, 3.8879180515044293`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eq1", "=",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[", "t", "]"}], ",", "t"}], "]"}], "+",
RowBox[{
RowBox[{"V", "[", "t", "]"}], "^", "2"}], "-", "1"}], "/.",
RowBox[{"{",
RowBox[{"t", "\[Rule]",
RowBox[{
SqrtBox["epsilon"], "*", "z"}]}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.887918102013444*^9, 3.8879181393857503`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"epsilon", " ",
SuperscriptBox[
RowBox[{"U", "[", "z", "]"}], "2"]}], "+",
RowBox[{
SuperscriptBox["U", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}]], "Output",
CellChangeTimes->{{3.8879180858684816`*^9, 3.8879181402786274`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"S", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"S0", "[", "z", "]"}], "+",
RowBox[{"epsilon", "*",
RowBox[{"S1", "[", "z", "]"}]}], "+",
RowBox[{
RowBox[{"epsilon", "^", "2"}], "*",
RowBox[{"S2", "[", "z", "]"}]}], "+",
RowBox[{
RowBox[{"epsilon", "^", "3"}], "*",
RowBox[{"S3", "[", "z", "]"}]}]}]}], "\[IndentingNewLine]",
RowBox[{"eq2", "=",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"epsilon", " ",
SuperscriptBox[
RowBox[{"S", "[", "z", "]"}], "2"]}], "+",
RowBox[{
SuperscriptBox["S", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}], "//", "Expand"}]}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{
3.8879180752157707`*^9, {3.887918152453635*^9, 3.88791826972195*^9}, {
3.8879183076698284`*^9, 3.8879183376548724`*^9}, {3.8879184063155804`*^9,
3.8879184078366446`*^9}, {3.8879184482696447`*^9, 3.887918450484495*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"S0", "[", "z", "]"}], "+",
RowBox[{"epsilon", " ",
RowBox[{"S1", "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{"S2", "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"S3", "[", "z", "]"}]}]}]], "Output",
CellChangeTimes->{{3.887918246181563*^9, 3.887918308436737*^9},
3.8879183401643686`*^9, 3.8879184085896053`*^9, {3.887918439442527*^9,
3.8879184515195303`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"epsilon", " ",
SuperscriptBox[
RowBox[{"S0", "[", "z", "]"}], "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "2"], " ",
RowBox[{"S0", "[", "z", "]"}], " ",
RowBox[{"S1", "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
SuperscriptBox[
RowBox[{"S1", "[", "z", "]"}], "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"S0", "[", "z", "]"}], " ",
RowBox[{"S2", "[", "z", "]"}]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "4"], " ",
RowBox[{"S1", "[", "z", "]"}], " ",
RowBox[{"S2", "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "5"], " ",
SuperscriptBox[
RowBox[{"S2", "[", "z", "]"}], "2"]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "4"], " ",
RowBox[{"S0", "[", "z", "]"}], " ",
RowBox[{"S3", "[", "z", "]"}]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "5"], " ",
RowBox[{"S1", "[", "z", "]"}], " ",
RowBox[{"S3", "[", "z", "]"}]}], "+",
RowBox[{"2", " ",
SuperscriptBox["epsilon", "6"], " ",
RowBox[{"S2", "[", "z", "]"}], " ",
RowBox[{"S3", "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "7"], " ",
SuperscriptBox[
RowBox[{"S3", "[", "z", "]"}], "2"]}], "+",
RowBox[{
SuperscriptBox["S0", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}], "+",
RowBox[{"epsilon", " ",
RowBox[{
SuperscriptBox["S1", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{
SuperscriptBox["S2", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{
SuperscriptBox["S3", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}]}]], "Output",
CellChangeTimes->{{3.887918246181563*^9, 3.887918308436737*^9},
3.8879183401643686`*^9, 3.8879184085896053`*^9, {3.887918439442527*^9,
3.8879184515195303`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8879183452150445`*^9, 3.887918349065816*^9},
3.8879184314865537`*^9}],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.887918354858339*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"S0", "[", "z", "]"}], ",", "z"}], "]"}], "-", "1"}],
"\[Equal]", "0"}], ",",
RowBox[{"S0", "[", "z", "]"}], ",", "z"}], "]"}]], "Input",
CellChangeTimes->{{3.8879185187681303`*^9, 3.8879185731612296`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"S0", "[", "z", "]"}], "\[Rule]",
RowBox[{"z", "+",
RowBox[{"C", "[", "1", "]"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.8879185416833997`*^9, 3.8879185737799397`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{
"\:6839\:636e\:521d\:59cb\:6761\:4ef6\:53ef\:5f97C", "[", "1", "]"}], "=",
"0"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"S0", "[", "z", "]"}], "=", "z"}]}]], "Input",
CellChangeTimes->{{3.88791858989254*^9, 3.8879186636050887`*^9}}],
Cell[BoxData["z"], "Output",
CellChangeTimes->{{3.887918652013639*^9, 3.8879186666777678`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coff1", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",", "epsilon"}], "]"}]}]], "Input",
CellChangeTimes->{{3.887918357822389*^9, 3.887918391530941*^9}, {
3.887918688272585*^9, 3.887918695957211*^9}}],
Cell[BoxData[
RowBox[{
SuperscriptBox["z", "2"], "+",
RowBox[{
SuperscriptBox["S1", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}]], "Output",
CellChangeTimes->{{3.8879183756603427`*^9, 3.8879183920949135`*^9},
3.887918426640916*^9, 3.8879184805924654`*^9, {3.887918673436167*^9,
3.887918696805401*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"Coff1", "\[Equal]", "0"}], ",",
RowBox[{"S1", "[", "z", "]"}], ",", "z"}], "]"}]], "Input",
CellChangeTimes->{{3.8879187053455906`*^9, 3.887918711846423*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"S1", "[", "z", "]"}], "\[Rule]",
RowBox[{
RowBox[{"-",
FractionBox[
SuperscriptBox["z", "3"], "3"]}], "+",
RowBox[{"C", "[", "1", "]"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.887918712708305*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"S1", "[", "z_", "]"}], "=",
RowBox[{"-",
FractionBox[
SuperscriptBox["z", "3"], "3"]}]}], "\[IndentingNewLine]",
RowBox[{"Coff2", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",",
RowBox[{"epsilon", "^", "2"}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.8879187664346857`*^9, 3.8879187945222635`*^9}}],
Cell[BoxData[
RowBox[{"-",
FractionBox[
SuperscriptBox["z", "3"], "3"]}]], "Output",
CellChangeTimes->{{3.8879187715485525`*^9, 3.8879187959491386`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["z", "4"]}], "3"]}], "+",
RowBox[{
SuperscriptBox["S2", "\[Prime]",
MultilineFunction->None], "[", "z", "]"}]}]], "Output",
CellChangeTimes->{{3.8879187715485525`*^9, 3.8879187959491386`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"Coff2", "\[Equal]", "0"}], ",",
RowBox[{"S2", "[", "z", "]"}], ",", "z"}], "]"}]], "Input",
CellChangeTimes->{{3.8879188020880227`*^9, 3.8879188375208454`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"S2", "[", "z", "]"}], "\[Rule]",
RowBox[{
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["z", "5"]}], "15"], "+",
RowBox[{"C", "[", "1", "]"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.887918838242525*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"S2", "[", "z_", "]"}], "=",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["z", "5"]}], "15"]}]], "Input",
CellChangeTimes->{{3.887918890682149*^9, 3.8879189000570264`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["z", "5"]}], "15"]], "Output",
CellChangeTimes->{3.887918901802555*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"S", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"S0", "[", "z", "]"}], "+",
RowBox[{"S1", "[", "z", "]"}], "+",
RowBox[{"S2", "[", "z", "]"}]}], "/.",
RowBox[{"{",
RowBox[{"z", "\[Rule]",
RowBox[{"t", "/",
SqrtBox["epsilon"]}]}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.887918862511116*^9, 3.887918951721563*^9}}],
Cell[BoxData[
RowBox[{
FractionBox["t",
SqrtBox["epsilon"]], "-",
FractionBox[
SuperscriptBox["t", "3"],
RowBox[{"3", " ",
SuperscriptBox["epsilon",
RowBox[{"3", "/", "2"}]]}]], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["t", "5"]}],
RowBox[{"15", " ",
SuperscriptBox["epsilon",
RowBox[{"5", "/", "2"}]]}]]}]], "Output",
CellChangeTimes->{3.887918919229647*^9, 3.8879189526412644`*^9}]
}, Open ]]
},
WindowSize->{1520, 815},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (November 7, 2010)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 1443, 40, 155, "Input"],
Cell[2025, 64, 493, 14, 33, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2555, 83, 150, 3, 31, "Input"],
Cell[2708, 88, 968, 27, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3713, 120, 543, 16, 92, "Input"],
Cell[4259, 138, 122, 2, 30, "Output"],
Cell[4384, 142, 163, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4584, 151, 184, 4, 31, "Input"],
Cell[4771, 157, 174, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4982, 166, 237, 5, 31, "Input"],
Cell[5222, 173, 170, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5429, 182, 188, 4, 31, "Input"],
Cell[5620, 188, 148, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5805, 197, 211, 5, 31, "Input"],
Cell[6019, 204, 143, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6199, 213, 186, 4, 31, "Input"],
Cell[6388, 219, 219, 7, 51, "Output"]
}, Open ]],
Cell[6622, 229, 270, 8, 31, "Input"],
Cell[6895, 239, 1156, 34, 117, "Input"],
Cell[CellGroupData[{
Cell[8076, 277, 601, 16, 52, "Input"],
Cell[8680, 295, 268, 6, 38, "Output"],
Cell[8951, 303, 238, 5, 50, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[9226, 313, 276, 6, 31, "Input"],
Cell[9505, 321, 248, 7, 50, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[9790, 333, 424, 13, 40, "Input"],
Cell[10217, 348, 321, 9, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[10575, 362, 1117, 29, 132, "Input"],
Cell[11695, 393, 496, 13, 30, "Output"],
Cell[12194, 408, 2093, 61, 50, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14324, 474, 122, 2, 31, "Input"],
Cell[14449, 478, 70, 1, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14556, 484, 345, 10, 31, "Input"],
Cell[14904, 496, 260, 7, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15201, 508, 324, 9, 52, "Input"],
Cell[15528, 519, 96, 1, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15661, 525, 238, 5, 31, "Input"],
Cell[15902, 532, 334, 8, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[16273, 545, 225, 5, 31, "Input"],
Cell[16501, 552, 307, 10, 51, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[16845, 567, 366, 10, 71, "Input"],
Cell[17214, 579, 161, 4, 51, "Output"],
Cell[17378, 585, 302, 9, 51, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17717, 599, 227, 5, 31, "Input"],
Cell[17947, 606, 313, 10, 51, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18297, 621, 219, 6, 50, "Input"],
Cell[18519, 629, 139, 4, 51, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18695, 638, 398, 12, 40, "Input"],
Cell[19096, 652, 448, 15, 54, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)
m20230317摄动求解方法kdv.nb
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 25713, 883]
NotebookOptionsPosition[ 23404, 797]
NotebookOutlinePosition[ 23748, 812]
CellTagsIndexPosition[ 23705, 809]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", "\:6444\:52a8\:65b9\:6cd5\:6c42\:89e31", "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\:63a7\:5236\:65b9\:7a0b", " ", "ut"}], "+",
RowBox[{"6", "*", "u", "*", "ux"}], "+", "uxxx"}], ")"}], "=", "0"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{"(*", "\:5047\:8bbeepsilon\:4e3a\:5c0f\:53c2\:6570", "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"u", "=",
RowBox[{"v", "[",
RowBox[{"x", ",", "t"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"u0", "=",
RowBox[{"epsilon", "*",
RowBox[{"Cos", "[",
RowBox[{"k", "*", "x"}], "]"}]}]}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"eq1", "=",
RowBox[{
RowBox[{"D", "[",
RowBox[{"u", ",", "t"}], "]"}], "+",
RowBox[{"u", "*",
RowBox[{"D", "[",
RowBox[{"u", ",", "x"}], "]"}]}], "+",
RowBox[{"D", "[",
RowBox[{"u", ",",
RowBox[{"{",
RowBox[{"x", ",", "3"}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.8879165881542664`*^9, 3.8879166453552375`*^9}, {
3.887916705789909*^9, 3.887916715456401*^9}, {3.8879168387143836`*^9,
3.8879171249355755`*^9}, 3.887917658286487*^9, {3.88791940884858*^9,
3.8879194956382465`*^9}, {3.887919593682848*^9, 3.8879196694957037`*^9}, {
3.8879201541408463`*^9, 3.8879202225297985`*^9}, {3.8879205629570556`*^9,
3.887920563129549*^9}, {3.8879209528895397`*^9, 3.8879209530468493`*^9}, {
3.887921201754115*^9, 3.887921205473319*^9}}],
Cell[BoxData[
RowBox[{"v", "[",
RowBox[{"x", ",", "t"}], "]"}]], "Output",
CellChangeTimes->{{3.8879171211759424`*^9, 3.8879171259391828`*^9},
3.887919478980333*^9, 3.8879201636297736`*^9, 3.8879202234872046`*^9,
3.8879205488364773`*^9, {3.887920836355976*^9, 3.8879208518008776`*^9}, {
3.8879209493736105`*^9, 3.887920953908944*^9}, {3.887921199238531*^9,
3.8879212073985786`*^9}, 3.887921266475166*^9, 3.887922551347904*^9}],
Cell[BoxData[
RowBox[{"epsilon", " ",
RowBox[{"Cos", "[",
RowBox[{"k", " ", "x"}], "]"}]}]], "Output",
CellChangeTimes->{{3.8879171211759424`*^9, 3.8879171259391828`*^9},
3.887919478980333*^9, 3.8879201636297736`*^9, 3.8879202234872046`*^9,
3.8879205488364773`*^9, {3.887920836355976*^9, 3.8879208518008776`*^9}, {
3.8879209493736105`*^9, 3.887920953908944*^9}, {3.887921199238531*^9,
3.8879212073985786`*^9}, 3.887921266475166*^9, 3.8879225513510265`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox["v",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}], "+",
RowBox[{
RowBox[{"v", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["v",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}]], "Output",
CellChangeTimes->{{3.8879171211759424`*^9, 3.8879171259391828`*^9},
3.887919478980333*^9, 3.8879201636297736`*^9, 3.8879202234872046`*^9,
3.8879205488364773`*^9, {3.887920836355976*^9, 3.8879208518008776`*^9}, {
3.8879209493736105`*^9, 3.887920953908944*^9}, {3.887921199238531*^9,
3.8879212073985786`*^9}, 3.887921266475166*^9, 3.8879225513520374`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"v", "[",
RowBox[{"x_", ",", "t_"}], "]"}], "=",
RowBox[{
RowBox[{"epsilon", "*",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
RowBox[{"epsilon", "^", "2"}], "*",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
RowBox[{"epsilon", "^", "3"}], "*",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}]}]}]}]}]], "Input",
CellChangeTimes->{{3.8879202592067013`*^9, 3.8879203340898952`*^9}, {
3.887920435631364*^9, 3.8879205117884502`*^9}, {3.8879208231652613`*^9,
3.8879208298529873`*^9}, {3.8879209756325665`*^9, 3.887921066519549*^9}, {
3.887921227710687*^9, 3.8879212293261824`*^9}, 3.8879212635835695`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"epsilon", " ",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}]}]}]], "Output",
CellChangeTimes->{3.8879212308949766`*^9, 3.887921267921627*^9,
3.8879225527762957`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8879211640734453`*^9, 3.8879211682823176`*^9}, {
3.8879212204987993`*^9, 3.887921226393634*^9}}],
Cell[BoxData[
RowBox[{"Cos", "[",
RowBox[{"k", " ", "x"}], "]"}]], "Output",
CellChangeTimes->{
3.887920287971174*^9, 3.8879203367097883`*^9, 3.887920480245757*^9, {
3.887920514746146*^9, 3.8879205381832294`*^9}, 3.8879210683082023`*^9, {
3.8879211693926797`*^9, 3.8879211796272264`*^9}, 3.887921223850042*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eq2", "=",
RowBox[{"eq1", "//", "Expand"}]}]], "Input",
CellChangeTimes->{{3.8879171335849524`*^9, 3.887917137492957*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"epsilon", " ",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{
SuperscriptBox["v3",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "4"], " ",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "4"], " ",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "5"], " ",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "4"], " ",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v3",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "5"], " ",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v3",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "6"], " ",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}], " ",
RowBox[{
SuperscriptBox["v3",
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{"epsilon", " ",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{
SuperscriptBox["v3",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}]}]], "Output",
CellChangeTimes->{
3.8879171381517763`*^9, 3.887920341288196*^9, 3.88792051740003*^9,
3.8879205671335454`*^9, 3.88792107412014*^9, {3.887921172409004*^9,
3.8879211866668773`*^9}, 3.887921238127804*^9, 3.8879212741244793`*^9,
3.887922554883716*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coeff1", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",", "epsilon"}], "]"}]}]], "Input",
CellChangeTimes->{{3.8879212837539277`*^9, 3.887921295411271*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}], "+",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}]], "Output",
CellChangeTimes->{3.8879212961781154`*^9, 3.8879225566256437`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"Coeff1", "\[Equal]", "0"}], ",",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "t"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8879205780546703`*^9, 3.8879206300613747`*^9}, {
3.8879210833360147`*^9, 3.887921103374196*^9}, 3.8879213026549654`*^9, {
3.8879214494680505`*^9, 3.8879214533928547`*^9}, {3.887921541054287*^9,
3.887921543235078*^9}}],
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}], "+",
RowBox[{
SuperscriptBox["v1",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "\[Equal]", "0"}], ",",
RowBox[{"v1", "[",
RowBox[{"x", ",", "t"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "t"}], "}"}]}], "]"}]], "Output",
CellChangeTimes->{
3.8879205877186937`*^9, {3.8879206256817107`*^9, 3.8879206315812607`*^9}, {
3.887921089040619*^9, 3.8879211042973585`*^9}, 3.887921306782612*^9,
3.8879214548183856`*^9, 3.887921544442231*^9, 3.8879225584325476`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v1", "[",
RowBox[{"x_", ",", "t_"}], "]"}], "=",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"A", "*", "x"}], "+",
RowBox[{"B", "*", "t"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.887921601179281*^9, 3.887921650995696*^9}, {
3.887921687358317*^9, 3.8879216987199593`*^9}}],
Cell[BoxData[
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"B", " ", "t"}], "+",
RowBox[{"A", " ", "x"}]}], "]"}]], "Output",
CellChangeTimes->{3.8879216519652996`*^9, 3.8879216997219906`*^9,
3.8879225601928678`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["Coeff1"], "Input",
CellChangeTimes->{{3.887921654301261*^9, 3.887921659974004*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox["A", "3"], " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"B", " ", "t"}], "+",
RowBox[{"A", " ", "x"}]}], "]"}]}], "-",
RowBox[{"B", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"B", " ", "t"}], "+",
RowBox[{"A", " ", "x"}]}], "]"}]}]}]], "Output",
CellChangeTimes->{3.887921660523925*^9, 3.8879217021412306`*^9,
3.8879225630188704`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v1", "[",
RowBox[{"x_", ",", "t_"}], "]"}], "=",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"A", "*", "x"}], "+",
RowBox[{"B", "*", "t"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"B", "\[Rule]",
RowBox[{"A", "^", "3"}]}], "}"}]}]}]], "Input",
CellChangeTimes->{{3.8879217274239717`*^9, 3.887921734589752*^9}}],
Cell[BoxData[
RowBox[{"Cos", "[",
RowBox[{
RowBox[{
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"A", " ", "x"}]}], "]"}]], "Output",
CellChangeTimes->{3.887921735405983*^9, 3.8879225644504695`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["Coeff1"], "Input"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.8879217467025905`*^9, 3.887922566212372*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coeff2", "=",
RowBox[{
RowBox[{
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",",
RowBox[{"epsilon", "^", "2"}]}], "]"}], "//", "TrigReduce"}], "//",
"Expand"}]}]], "Input",
CellChangeTimes->{{3.887921762921474*^9, 3.887921770718666*^9}, {
3.887922525824791*^9, 3.887922533256193*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "A", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}], "+",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}]], "Output",
CellChangeTimes->{3.8879217718989916`*^9, 3.8879225339319124`*^9,
3.8879225678467913`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"Coeff2", "\[Equal]", "0"}], ",",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "t"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8879217973776693`*^9, 3.8879218000068083`*^9}}],
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "A", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}], "+",
RowBox[{
SuperscriptBox["v2",
TagBox[
RowBox[{"(",
RowBox[{"3", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None], "[",
RowBox[{"x", ",", "t"}], "]"}]}], "\[Equal]", "0"}], ",",
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "t"}], "}"}]}], "]"}]], "Output",
CellChangeTimes->{3.8879218016520123`*^9, 3.887922608405772*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v2", "[",
RowBox[{"x_", ",", "t_"}], "]"}], "=",
RowBox[{"C1", "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"A1", "*", "x"}], "+",
RowBox[{"B1", "*", "t"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.8879218574901667`*^9, 3.8879218717089367`*^9}, {
3.887921927285992*^9, 3.8879220141608768`*^9}, {3.887922105452215*^9,
3.8879221251453714`*^9}, {3.8879221920097866`*^9, 3.8879222198974633`*^9}, {
3.8879222631627655`*^9, 3.887922265433198*^9}, {3.887922619806963*^9,
3.8879226199793806`*^9}}],
Cell[BoxData[
RowBox[{"C1", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"B1", " ", "t"}], "+",
RowBox[{"A1", " ", "x"}]}], "]"}]}]], "Output",
CellChangeTimes->{
3.887921872699566*^9, 3.887921932163124*^9, 3.887921972991118*^9, {
3.88792200318513*^9, 3.887922015056056*^9}, {3.8879221065943756`*^9,
3.8879221272574453`*^9}, {3.8879221930441914`*^9, 3.8879222208360996`*^9},
3.8879222668899837`*^9, 3.887922621343624*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Coeff2", "//", "TrigReduce"}], "//", "Expand"}]], "Input",
CellChangeTimes->{{3.887922167540891*^9, 3.887922177741206*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ", "A", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox["A1", "3"], " ", "C1", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"B1", " ", "t"}], "+",
RowBox[{"A1", " ", "x"}]}], "]"}]}], "-",
RowBox[{"B1", " ", "C1", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"B1", " ", "t"}], "+",
RowBox[{"A1", " ", "x"}]}], "]"}]}]}]], "Output",
CellChangeTimes->{
3.887921889522421*^9, 3.8879219752668986`*^9, {3.8879220072446623`*^9,
3.8879220174619102`*^9}, {3.88792210967334*^9, 3.8879221290512705`*^9}, {
3.887922172475323*^9, 3.88792222284204*^9}, 3.8879222695408816`*^9,
3.8879226242208147`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Coeff21", "=",
RowBox[{
RowBox[{"Coeff2", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"B1", "\[Rule]",
RowBox[{"2", "*",
RowBox[{"A", "^", "3"}]}]}], ",",
RowBox[{"A1", "\[Rule]",
RowBox[{"2", "*", "A"}]}]}], "}"}]}], "//", "TrigReduce"}]}]], "Input",
CellChangeTimes->{{3.887922336531439*^9, 3.887922415187524*^9}, {
3.8879227012728786`*^9, 3.8879227182296324`*^9}}],
Cell[BoxData[
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "A"}], " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}], "+",
RowBox[{"12", " ",
SuperscriptBox["A", "3"], " ", "C1", " ",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}]}], ")"}]}]], "Output",
CellChangeTimes->{{3.887922384922779*^9, 3.8879224159244614`*^9}, {
3.8879227021816673`*^9, 3.8879227192325487`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"Coeff21", "\[Equal]", "0"}], ",", "C1"}], "]"}]], "Input",
CellChangeTimes->{{3.887922721323033*^9, 3.8879227362095356`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"C1", "\[Rule]",
FractionBox["1",
RowBox[{"12", " ",
SuperscriptBox["A", "2"]}]]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.887922736883399*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v2", "[",
RowBox[{"x", ",", "t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"C1", "\[Rule]",
FractionBox["1",
RowBox[{"12", " ",
SuperscriptBox["A", "2"]}]]}], ",",
RowBox[{"B1", "\[Rule]",
RowBox[{"2", "*",
RowBox[{"A", "^", "3"}]}]}], ",",
RowBox[{"A1", "\[Rule]",
RowBox[{"2", "*", "A"}]}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.8879227870738897`*^9, 3.8879228096629763`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}],
RowBox[{"12", " ",
SuperscriptBox["A", "2"]}]]], "Output",
CellChangeTimes->{{3.887922799108447*^9, 3.8879228103374047`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"v", "[",
RowBox[{"x", ",", "t"}], "]"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"C1", "\[Rule]",
FractionBox["1",
RowBox[{"12", " ",
SuperscriptBox["A", "2"]}]]}], ",",
RowBox[{"B1", "\[Rule]",
RowBox[{"2", "*",
RowBox[{"A", "^", "3"}]}]}], ",",
RowBox[{"A1", "\[Rule]",
RowBox[{"2", "*", "A"}]}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.88792282399218*^9, 3.887922859318007*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"epsilon", " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"A", " ", "x"}]}], "]"}]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["epsilon", "2"], " ",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["A", "3"], " ", "t"}], "+",
RowBox[{"2", " ", "A", " ", "x"}]}], "]"}]}],
RowBox[{"12", " ",
SuperscriptBox["A", "2"]}]], "+",
RowBox[{
SuperscriptBox["epsilon", "3"], " ",
RowBox[{"v3", "[",
RowBox[{"x", ",", "t"}], "]"}]}]}]], "Output",
CellChangeTimes->{3.8879228599122477`*^9}]
}, Open ]]
},
WindowSize->{707, 688},
WindowMargins->{{Automatic, 83}, {Automatic, 33}},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (November 7, 2010)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 1621, 40, 195, "Input"],
Cell[2203, 64, 446, 7, 30, "Output"],
Cell[2652, 73, 480, 8, 30, "Output"],
Cell[3135, 83, 1082, 33, 33, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4254, 121, 797, 20, 52, "Input"],
Cell[5054, 143, 455, 14, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5546, 162, 147, 2, 31, "Input"],
Cell[5696, 166, 323, 6, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6056, 177, 150, 3, 31, "Input"],
Cell[6209, 182, 4758, 172, 163, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[11004, 359, 192, 4, 31, "Input"],
Cell[11199, 365, 498, 18, 33, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[11734, 388, 482, 11, 31, "Input"],
Cell[12219, 401, 926, 28, 38, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[13182, 434, 325, 9, 31, "Input"],
Cell[13510, 445, 223, 6, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[13770, 456, 98, 1, 31, "Input"],
Cell[13871, 459, 430, 14, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14338, 478, 385, 12, 31, "Input"],
Cell[14726, 492, 220, 6, 33, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14983, 503, 32, 0, 31, "Input"],
Cell[15018, 505, 94, 1, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15149, 511, 337, 9, 31, "Input"],
Cell[15489, 522, 766, 27, 49, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[16292, 554, 302, 8, 31, "Input"],
Cell[16597, 564, 1012, 33, 49, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17646, 602, 562, 13, 31, "Input"],
Cell[18211, 617, 449, 10, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18697, 632, 159, 3, 31, "Input"],
Cell[18859, 637, 877, 25, 49, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[19773, 667, 441, 12, 31, "Input"],
Cell[20217, 681, 691, 20, 49, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20945, 706, 187, 4, 31, "Input"],
Cell[21135, 712, 224, 7, 50, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[21396, 724, 486, 15, 48, "Input"],
Cell[21885, 741, 316, 9, 53, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[22238, 755, 480, 15, 48, "Input"],
Cell[22721, 772, 667, 22, 53, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)
chap2.nb
(**********************************************************************************)
(* Mathematica Code for the illustrative problem in chapter 2 of the book: *)
(* BEYOND BERTURBATION - INTRODUCTION TO THE HOMOTOPY ANALYSIS METHOD *)
(* by Shijun LIAO, Published by Chapman & Hall/CRC, Boca Raton, 2003 *)
(**********************************************************************************)
(* Governing equation: *)
(* V'(t) +V(t)*V(t) = 1, *)
(* *)
(* subject to the initial condition: *)
(* *)
(* V(0) = 0 *)
(* *)
(* Sept. 2005 *)
(* Shanghai Jiao Tong Uni *)
(* by SHIjun LIAO *)
(**********************************************************************************)
<<Calculus`Pade`;
<<Graphics`Graphics`;
(**********************************************************************************)
(* Which base functions would you like to use ? *)
(*--------------------------------------------------------------------------------*)
(* BASE = 1 corresponds to polynomial functions (2.50) *)
(* BASE = 2 corresponds to fractional functions (2.62) *)
(* BASE = 3 corresponds to exponential functions (2.70) *)
(* BASE = 4 corresponds to set of base functions (2.82) *)
(**********************************************************************************)
BASE = 1;
(**********************************************************************************)
(* Define chi[m] *)
(* This module gives the definition (2.42) of chi[m] *)
(**********************************************************************************)
chi[m_]:=If[m<=1,0,1];
(**********************************************************************************)
(* Define GetR[m] *)
(* This module gives R[m] defined by (2.43) *)
(**********************************************************************************)
GetR[m_]:=Module[{temp,n},
temp[1] = D[v[m-1],x];
temp[2] = Sum[v[n]*v[m-1-n],{n,0,m-1}];
temp[3] = temp[1] + temp[2] + chi[m] -1;
R[m] = temp[3]//Expand;
];
(**********************************************************************************)
(* Define GetRHS[m] *)
(* This module gets the whole right-hand side term of Eq. (2.39) *)
(**********************************************************************************)
GetRHS[m_]:=Module[{},
GetR[m];
RHS[m]= Expand[hbar*R[m]*H[x]];
];
(**********************************************************************************)
(* Define H *)
(* This module defines the auxiliary function H[t] *)
(**********************************************************************************)
H[x_]:=Module[{temp},
If[BASE == 1 || BASE == 4, temp = 1];
If[BASE == 2, temp = 1/x];
If[BASE == 3, temp = Exp[-x]];
Expand[temp]
];
(**********************************************************************************)
(* Define GetInitial *)
(* This module defines the initial guess of V(t) *)
(**********************************************************************************)
GetInitial = Module[{},
If[BASE == 1, v[0] = x];
If[BASE == 2, v[0] = 1-1/x];
If[BASE == 3 || BASE == 4, v[0] = 1-Exp[-x]];
Print[" initial guess = ",v[0]];
];
(**********************************************************************************)
(* Define L *)
(* This module defines the auxiliary linear operator (2.23) *)
(**********************************************************************************)
L[f_]:=Module[{},
If[BASE == 1, gamma[1] = 1; gamma[2] = 0];
If[BASE == 2, gamma[1] = x; gamma[2] = 1];
If[BASE == 3 || BASE == 4, gamma[1] = 1; gamma[2] = 1];
Expand[gamma[1]*D[f,x]+gamma[2]*f]
];
(**********************************************************************************)
(* Define Linv *)
(* This module defines the inverse of the auxiliary linear operator (2.23) *)
(* In other words, find solution u of the following equation: *)
(* L[u ] = f *)
(**********************************************************************************)
Linv[f_]:=Module[{temp,EQ,u,solution},
EQ = L[u[x]]-f;
temp = DSolve[EQ==0,u[x],x];
solution = temp[[1,1,2]]/.C[_]->0;
Expand[solution]
];
(**********************************************************************************)
(* the property of the inverse operator of L *)
(* Linv[f_+g_] := Linv[f] + Linv[g] *)
(**********************************************************************************)
Linv[p_Plus] := Map[Linv,p];
Linv[c_*f_] := c*Linv[f] /; FreeQ[c,x];
(**********************************************************************************)
(* Define GetSPECIAL *)
(* This module gives a special solution of (2.39) *)
(**********************************************************************************)
GetSPECIAL[m_]:=Module[{temp},
temp = Expand[RHS[m]];
SPECIAL = Linv[temp];
];
(**********************************************************************************)
(* Define GetCOMMON *)
(* This module gives a commoon solution of (2.39) *)
(**********************************************************************************)
GetCOMMON[m_]:=Module[{temp,u,solution},
temp = DSolve[L[u[x]]==0,u[x],x];
solution = temp[[1,1,2]];
COMMON = SPECIAL + chi[m]*v[m-1] + solution;
];
(**********************************************************************************)
(* Define Getv *)
(* This module gives the solution of (2.39) and (2.40) *)
(**********************************************************************************)
Getv[m_]:=Module[{temp,EQ,x0,res},
If[BASE == 1 || BASE == 3 || BASE == 4, x0 = 0];
If[BASE == 2, x0 = 1];
EQ = Expand[COMMON/.x->x0];
temp = Solve[EQ==0,C[1]];
res = COMMON/.temp[[1,1]];
v[m] = res//Expand;
];
(**********************************************************************************)
(* Define HP[F,m,n] *)
(* This module gives the [m,n] homotopy-Pade approximation of the series *)
(* F[k] = sum[f[i],{i,0,k}] *)
(* For details, please see section 2.3.7 *)
(**********************************************************************************)
hp[F_,m_,n_]:=Block[{i,k,dF,temp,q},
dF[0] = F[0];
For[k=1, k<=m+n, k=k+1, dF[k] = Expand[F[k] - F[k-1]] ];
temp = dF[0]+Sum[dF[i]*q^i,{i,1,m+n}];
Pade[temp,{q,0,m,n}]/.q->1
];
(**********************************************************************************)
(* Definition of the function (2.58) *)
(**********************************************************************************)
mu0[m_,n_,h_] := (-h)^n*Sum[Binomial[n-1+j,j]*(1+h)^j,{j,0, m-n}];
(**********************************************************************************)
(* Definition of the function (2.85) *)
(**********************************************************************************)
sigma0[m_,n_,k_,h_] := (mu0[m,n+k,h]+mu0[m,n+k-1,h])/2;
(**********************************************************************************)
(* Definition of the function (2.91) *)
(**********************************************************************************)
mu[m_,n_,alpha_,h_]:=If[n>m,0,(-h)^(n-alpha)
*(1+Sum[(-1)^j*Binomial[alpha-n,j]*(1+h)^j,{j,1,m-n}])];
(**********************************************************************************)
(* Definition of the function (2.96) *)
(**********************************************************************************)
sigma[m_,n_,k_,alpha_,h_]:=(mu[m,n+k,alpha,h]+mu[m,n+k-1,alpha,h])/2;
(**********************************************************************************)
(* Main code *)
(**********************************************************************************)
ham[m0_,m1_]:=Module[{temp,k,variable},
For[k=Max[1,m0],k<=m1,k=k+1,
Print[" k = ",k];
GetRHS[k];
GetSPECIAL[k];
GetCOMMON[k];
Getv[k];
If[BASE == 1 || BASE == 3 || BASE == 4, variable = t];
If[BASE == 2, variable = 1 + t ];
If[k == 1, V[0] = v[0]/.x->variable];
V[k] = Simplify[V[k-1] + v[k]/.x->variable];
Vtt0[k] = D[V[k],{t,2}]/.t->0//Expand;
Vttt0[k] = D[V[k],{t,3}]/.t->0//Expand;
If[PRN==1,
Print[" V''(0) = ",N[Vtt0[k],20], " delta = ",N[Vtt0[k]-chi[k]*Vtt0[k-1],20]];
Print[" V'''(0) = ",N[Vttt0[k],20]," delta = ",N[Vttt0[k]-chi[k]*Vttt0[k-1],20]];
];
];
Print[" Successful !"];
];
(**********************************************************************************)
(* Would you like to print more information to check the convergence ? *)
(* 1 correspondings to YES *)
(* 0 correspondings to NO *)
(**********************************************************************************)
PRN = 1;
(**********************************************************************************)
(* Parameters definitions *)
(**********************************************************************************)
hbar = h;
Print[ "The main code is ham[N_start,N_end]" ];
Print[ "BASE = ",BASE];
Print[ "Auxiliary function = ", H[x] ];
Print[ "Initial guess = ", v[0] ];
Print[ "PRN = ",PRN];
Print[ "hbar = ",hbar];
(* Get up-to 5th-order approximation *)
ham[1,5];
(* Get [1,1] homotopy-Pade approximation of V(t) *)
hp[V,1,1]//Simplify;
kdv-homotopy.m
(* ::Package:: *)
(************************************************************************)
(* This file was generated automatically by the Mathematica front end. *)
(* It contains Initialization cells from a Notebook file, which *)
(* typically will have the same name as this file except ending in *)
(* ".nb" instead of ".m". *)
(* *)
(* This file is intended to be loaded into the Mathematica kernel using *)
(* the package loading commands Get or Needs. Doing so is equivalent *)
(* to using the Evaluate Initialization Cells menu command in the front *)
(* end. *)
(* *)
(* DO NOT EDIT THIS FILE. This entire file is regenerated *)
(* automatically each time the parent Notebook file is saved in the *)
(* Mathematica front end. Any changes you make to this file will be *)
(* overwritten. *)
(************************************************************************)
(*********************************************************************************************)
(* This ia a Mathematica code for Kdv equation *)
(* (1-lambda)ft+a*fttt+b*f*ft=0 *)
(*-------------------------------------------------------------------------------------------*)
(* Definition of global variables *)
(* lambda[0]=>initial guess of w0/(C0*k) *)
(* lambda[k]=>kth-order approximation of w/(C0*k) *)
(* f[0]=>initial guess of solution f *)
(* f[k]=>solution of kth-order deformation equation *)
(* F[k]=>kth-order approximation of solution *)
(* ft[k]=>D[f[k],t] *)
(* ftt[k]=>D[f[k].{t,2}] *)
(* fttt[k]=>D[f[k],{t,3}] *)
(* R[k]=>a term on the right hand side of the mth deformation equation *)
(* RHS[k]=>right hand side of the kth-order deformation equation *)
(* fSpecial=>a special solution of the kth-order deformation equation *)
(*********************************************************************************************)
(*********************************************************************************************)
(* Define GetR[k] *)
GetR[k_]:=Module[{temp,n},
temp[1]=ft[k-1];
temp[2]=Sum[lambda[n]*ft[k-1-n],{n,0,k-1}];
(*Print["lambda*f'=",temp[2]];*)
temp[3]=fttt[k-1];
(*Print["f*f'=",temp[3]];*)
temp[4]=Sum[f[n]*ft[k-1-n],{n,0,k-1}];
(*Print["fttt=",temp[4]];*)
temp[5]=TrigReduce[Expand[temp[1]]];
temp[6]=TrigReduce[Expand[temp[2]]];
temp[7]=TrigReduce[Expand[temp[3]]];
temp[8]=TrigReduce[Expand[temp[4]]];
temp[9]=temp[5]-temp[6]+a*temp[7]+b*temp[8];
R[k]=TrigReduce[Expand[temp[9]]];
(*Print["R=",R[k]];*)
];
(* Define GetRHS *)
GetRHS[k_]:=Module[{},
GetR[k];
RHS[k]=Expand[TrigReduce[hbar*R[k]]];
];
(* Define the axiliary linear operator L0 *)
L0[f_]:= Module[{},
Expand[D[f,{t,3}]+D[f,t]];
];
(* Define the inverse operator of the auxiliary linear operator L0 *)
L0inv[Sin[n_*t]]:=Cos[n*t]/(n^3-n);
L0inv[f_+g_]:=L0inv[f]+L0inv[g];
L0inv[c_*f_]:=c*L0inv[f]/;FreeQ[c,t];
L0inv[c_]:=c/;FreeQ[c,t];
L0inv[p_Plus]:=Map[L0inv,p];
(* Set initial guess of f[t] *)
Getf0:=Module[{},
f[0]=Cos[t];
];
(* Define the function chi_{k} *)
chi[k_]:=If[k<=1,0,1];
(* Define Getft *)
Getft[k_]:=Module[{},
ft[k]=Expand[D[f[k],t]];
];
(* Define Getftt *)
Getftt[k_]:=Module[{},
ftt[k]=Expand[D[f[k],{t,2}]];
];
(* Define Getfttt *)
Getfttt[k_]:=Module[{},
fttt[k]=Expand[D[f[k],{t,3}]];
];
(* Define GetfAll *)
GetfAll[k_]:=Module[{},
Getft[k];
Getftt[k];
Getfttt[k];
];
(* Define lumbda[0] *)
GetLambda0:=Module[{temp,eq},
GetfAll[0];
GetR[1];
temp[1]=Expand[R[1]];
temp[2]=TrigReduce[temp[1]];
(*Print["R[1]=",temp[2]];*)
eq=Coefficient0[temp[2],Sin[t]];
(*Print["eq=",eq];*)
temp[0]=Solve[eq==0,lambda[0]];
temp[1]=lambda[0]/.temp[0];
temp[2]=temp[1][[1]];
lambda[0]=Simplify[temp[2]];
(*Print["lambda[0]=",lambda[0]];*)
];
(* Define lambda[k] *)
GetLambda[k_]:=Module[{temp,eq},
If[k==1,Print["lambda[0] must be known"]];
If[k>1,
GetfAll[k-1];
GetRHS[k];
temp[0]=Expand[RHS[k]];
(*Print["RHS=",temp[0]];*)
temp[1]=Expand[temp[0]];
temp[2]=TrigReduce[temp[1]];
eq=Expand[Coefficient[temp[2],Sin[t]]];
(*Print["Eq=",eq];*)
temp[0]=First[lambda[k-1]/.Solve[eq==0,lambda[k-1]]];
lambda[k-1]=Simplify[temp[0]];
];
(*Print["lambda=",lambda[k-1]];*)
];
(* Define CheckRHS[k] *)
CheckRHS[k_]:=Module[{temp,C1},
temp[0]=Expand[RHS[k]];
C1=Coefficient[temp[0],Sin[t]];
temp[1]=temp[0]-C1*Sin[t];
RHS[k]=Expand[temp[1]];
temp[0]=RHS[k]/.Sin[t]->0;
RHS[k]=Expand[temp[0]];
];
(* Define GetfSpecial *)
GetfSpecial[k_]:=Module[{temp},
temp[0]=Expand[RHS[k]];
fSpecial=L0inv[temp[0]];
(*Print["fSpecial=",fSpecial];*)
];
(* Define Getf *)
(*Getf[k_]:=Module[{eq,temp,n,C2},*)
(*temp[0]=fSpecial+C2*Cos[t];*)
(*eq[1]=temp[0]/.t->0;*)
(*eq[2]=temp[0]/.t->Pi;*)
(*eq[3]=Expand[eq[1]];*)
(*eq[4]=Expand[eq[2]];*)
(*temp[1]=First[C2/.Solve[eq[3]-eq[4]==0,C2]];*)
(*C2=Expand[temp[1]];*)
(*Print["C2=",C2];*)
(*temp[2]=Expand[fSpecial+C2*Cos[t]];*)
(*f[k]=temp[2]+chi[k]*f[k-1];*)
(*Print["f=",f[k]];*)
(*];*)
(* Define Getf *)
Getf[k_]:=Module[{eq,temp,n,C2},
temp[0]=fSpecial;
temp[1]=fSpecial+chi[k]*f[k-1];
eq[1]=temp[1]/.t->0;
eq[2]=temp[1]/.t->Pi;
(*eq[3]=Expand[eq[1]];*)
(*eq[4]=Expand[eq[2]];*)
(*temp[1]=First[C2/.Solve[eq[3]-eq[4]==0,C2]];*)
C2=(eq[2]-eq[1])/2;
(*Print["C2=",C2];*)
f[k]=Expand[temp[1]+C2*Cos[t]];
(*f[k]=temp[2]+chi[k]*f[k-1];*)
(*Print["f=",f[k]];*)
];
(* Define GetFig *)
GetFig[m0_,m1_]:=Module[{k,temp},
For[k=m0,k<=m1,k=k+1,
temp[1]=lambda[k-1];
temp[2]=Sqrt[a*6];
fig[k]=Show[exact,ParametricPlot[{temp[1],temp[2]},{}]];
];
];
(* Main Code *)
main[m0_,m1_]:=Module[{temp,k,n},
For[k=Max[1,m0],k<=m1,k=k+1,
Print["k=",k];
GetfAll[k-1];
GetRHS[k];
GetLambda[k];
CheckRHS[k];
GetfSpecial[k];
Getf[k];
LAMBDA[k-1]=Expand[Sum[lambda[n],{n,0,k-1}]];
Print["LAMBDA=",LAMBDA[k-1]//N];
F[k]=F[k-1]+f[k];
(* Print["F=",F[k]];*)
delta1[k-1]=LAMBDA[k-1]-LAMBDA[k-2];
Print["delta1=",delta1[k-1]//N];
delta2[k]=F[k]-F[k-1]/.t->0;
Print["delta2=",delta2[k]//N];
];
(*k=k-1;*)
f1=F[k]/.t->0;
f2=F[k]/.t->Pi;
(*Print["f1=",f1];*)
(*Print["f2=",f2];*)
h=f1-f2;
(*F[k]=F[k]-h;*)
Print["h=",h];
(*makeplotfile["E:\wave_kdv\Result1\F_30_8.dat",F[k],t,0,10,10,0,0];*)
(*makeplotfile["E:\wave_kdv\Result1\LAMBDA_30_3.dat",LAMBDA[k-1],c,0,1.5,100,0,0];*)
(*makeplotfile["E:\wave_kdv\Result1\LAMBDAb_30_3.dat",LAMBDA[k-1],d,0,0.7,100,0,0];*)
(*F[k]>>"E:\wave_kdv\Result\F_30_10.nb";*)
(*LAMBDA[k-1]>>"E:\My Research\Result_2\LAMBDA_20.nb"*)
cpu[];
Print["Successful !"];
];
(* set the initial guess *)
hbar=-1;
Getf0;
F[0]=f[0];
(*Z[0]=lambda[0];*)
lambda[0]=1-a;
(*c=kH,a=gamma;d=A/H;b=3A/2H*)
c=1;
d=3/10;
a=c^2/6;
b=(3/2)*d;
Print["kH=",c];
Print["A/H=",d];
$RecursionLimit=40000;
初始解的选取.nb
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 7989, 265]
NotebookOptionsPosition[ 6910, 223]
NotebookOutlinePosition[ 7315, 240]
CellTagsIndexPosition[ 7272, 237]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"\:9009\:62e9\:521d\:59cb\:89e3u", "[", "0", "]"}], "=", "0"}],
";",
RowBox[{
RowBox[{"\:9690\:542b\:8fb9\:754c\:6761\:4ef6u",
RowBox[{"(", "Infinity", ")"}]}], "=", "1"}]}], "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"u1", "[", "t_", "]"}], "=",
RowBox[{"c0", "+",
RowBox[{"c1", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "lambda"}], "*", "t"}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"u2", "[", "t_", "]"}], "=",
RowBox[{"c0", "+",
RowBox[{"c2", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}], "*", "lambda", "*", "t"}], "]"}]}]}]}], ";"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.8886108595718317`*^9, 3.888610934979669*^9}, {
3.888611106698922*^9, 3.8886111277128797`*^9}, {3.888611209253703*^9,
3.8886112383355026`*^9}, {3.888611424484345*^9, 3.888611470408289*^9}, {
3.8886115338856363`*^9, 3.888611536899101*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"BCini1", "=",
RowBox[{"u1", "[", "0", "]"}]}], "\[IndentingNewLine]",
RowBox[{"BCini2", "=",
RowBox[{"u2", "[", "0", "]"}]}]}], "Input",
CellChangeTimes->{{3.8886109551000614`*^9, 3.8886109564945664`*^9}, {
3.888653500091282*^9, 3.8886535083973575`*^9}, {3.8886535537670417`*^9,
3.8886535827298975`*^9}}],
Cell[BoxData[
RowBox[{"c0", "+", "c1"}]], "Output",
CellChangeTimes->{3.8886535090702877`*^9, 3.8886535834811916`*^9}],
Cell[BoxData[
RowBox[{"c0", "+", "c2"}]], "Output",
CellChangeTimes->{3.8886535090702877`*^9, 3.8886535834811916`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8886114783664436`*^9, 3.8886114865825467`*^9},
3.888653504042562*^9}],
Cell[BoxData[
RowBox[{"c0", "+", "c2"}]], "Output",
CellChangeTimes->{
3.8886109572116127`*^9, {3.8886114829473567`*^9, 3.888611487026244*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"BCInfty1", "=",
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"u1", "[", "t", "]"}], ",",
RowBox[{"t", "->", "Infinity"}], ",",
RowBox[{"Assumptions", " ", "->",
RowBox[{"lambda", ">", "0"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"BCInfty2", "=",
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"u2", "[", "t", "]"}], ",",
RowBox[{"t", "->", "Infinity"}], ",",
RowBox[{"Assumptions", " ", "->",
RowBox[{"lambda", ">", "0"}]}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.888610965979005*^9, 3.888611003244742*^9}, {
3.8886111346817265`*^9, 3.888611151197734*^9}, {3.8886115019014626`*^9,
3.8886115056355853`*^9}, {3.8886115416978188`*^9, 3.8886115435419817`*^9}, {
3.88865352495428*^9, 3.8886535438406677`*^9}, {3.8886537178275433`*^9,
3.8886537184052744`*^9}}],
Cell[BoxData["c0"], "Output",
CellChangeTimes->{{3.888610980868559*^9, 3.888611004083729*^9},
3.888611037776342*^9, {3.8886110945772314`*^9, 3.888611152385974*^9},
3.888611506354329*^9, 3.888611544197648*^9, 3.8886535199480133`*^9, {
3.888653670660355*^9, 3.8886537280701604`*^9}}],
Cell[BoxData["c0"], "Output",
CellChangeTimes->{{3.888610980868559*^9, 3.888611004083729*^9},
3.888611037776342*^9, {3.8886110945772314`*^9, 3.888611152385974*^9},
3.888611506354329*^9, 3.888611544197648*^9, 3.8886535199480133`*^9, {
3.888653670660355*^9, 3.8886537280701604`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"BCini1", "==", "0"}], "&&", " ",
RowBox[{"BCInfty1", "\[Equal]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"c0", ",", "c1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.888653589441354*^9, 3.888653656337488*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"c0", "\[Rule]", "1"}], ",",
RowBox[{"c1", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.8886536574318304`*^9, 3.8886536728545723`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"BCini2", "==", "0"}], "&&", " ",
RowBox[{"BCInfty2", "\[Equal]", "1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"c0", ",", "c2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.888653691167903*^9, 3.8886536940657988`*^9}, {
3.888653750534522*^9, 3.8886537509580555`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"c0", "\[Rule]", "1"}], ",",
RowBox[{"c2", "\[Rule]",
RowBox[{"-", "1"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.888653694961228*^9, 3.888653753042244*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"u", "[", "t_", "]"}], "=",
RowBox[{
RowBox[{"u1", "[", "t", "]"}], "+",
RowBox[{"epsilon", "*",
RowBox[{"(",
RowBox[{
RowBox[{"u1", "[", "t", "]"}], "-",
RowBox[{"u2", "[", "t", "]"}]}], ")"}]}]}]}]], "Input",
CellChangeTimes->{{3.8886115189011374`*^9, 3.8886115740103483`*^9}}],
Cell[BoxData[
RowBox[{"c0", "+",
RowBox[{"c1", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "lambda"}], " ", "t"}]]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "c2"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ", "lambda", " ", "t"}]]}], "+",
RowBox[{"c1", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "lambda"}], " ", "t"}]]}]}], ")"}], " ",
"epsilon"}]}]], "Output",
CellChangeTimes->{3.888611576135717*^9, 3.888653759582259*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"\:9009\:62e9\:6ee1\:8db3\:8fb9\:754c\:6761\:4ef6u",
RowBox[{"(", "0", ")"}]}], "=", "0"}], ";", " ",
RowBox[{
RowBox[{
RowBox[{"u", "'"}],
RowBox[{"(", "0", ")"}]}], "=", "0"}], ";", " ",
RowBox[{
RowBox[{
RowBox[{"u", "'"}],
RowBox[{"(", "Infinity", ")"}]}], "=",
RowBox[{"1", "\:7684\:521d\:59cb\:89e3"}]}]}], "*)"}]], "Input",
CellChangeTimes->{{3.8886537787227325`*^9, 3.8886538625798874`*^9}}]
},
WindowSize->{1520, 815},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (November 7, 2010)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[557, 20, 1150, 33, 112, "Input"],
Cell[CellGroupData[{
Cell[1732, 57, 343, 7, 52, "Input"],
Cell[2078, 66, 120, 2, 30, "Output"],
Cell[2201, 70, 120, 2, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2358, 77, 122, 2, 31, "Input"],
Cell[2483, 81, 147, 3, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2667, 89, 842, 19, 52, "Input"],
Cell[3512, 110, 293, 4, 30, "Output"],
Cell[3808, 116, 293, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4138, 125, 325, 9, 31, "Input"],
Cell[4466, 136, 252, 7, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4755, 148, 378, 10, 31, "Input"],
Cell[5136, 160, 248, 7, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5421, 172, 348, 10, 31, "Input"],
Cell[5772, 184, 605, 19, 33, "Output"]
}, Open ]],
Cell[6392, 206, 514, 15, 31, "Input"]
}
]
*)
(* End of internal cache information *)
线性算子的选取-小练习1.nb
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 12320, 389]
NotebookOptionsPosition[ 11049, 341]
NotebookOutlinePosition[ 11454, 358]
CellTagsIndexPosition[ 11411, 355]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
RowBox[{"\:9009\:62e9\:7ebf\:6027\:7b97\:5b50", "\:ff0c",
RowBox[{
"\:5982\:4f55\:9009\:53d6\:7ebf\:6027\:7b97\:5b50\:5305\:62ecC0", "+",
RowBox[{"C1", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "lambda"}], "*", "t"}], "]"}]}], "+",
RowBox[{"C2", "*",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}], "*", "lambda", "*", "t"}], "]"}]}]}]}],
")"}]}]], "Input",
CellChangeTimes->{{3.888610023566291*^9, 3.888610063744712*^9}, {
3.88865239063124*^9, 3.8886524628218174`*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"eq1", "=",
RowBox[{
RowBox[{"c3", "*",
RowBox[{
RowBox[{"f", "'''"}], "[", "t", "]"}]}], "+",
RowBox[{"c2", "*",
RowBox[{
RowBox[{"f", "''"}], "[", "t", "]"}]}], "+",
RowBox[{"c1", "*",
RowBox[{
RowBox[{"f", "'"}], "[", "t", "]"}]}], "+",
RowBox[{"c0", "*",
RowBox[{"f", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq2", "=",
RowBox[{
RowBox[{"c3", "*",
RowBox[{
RowBox[{"g", "'''"}], "[", "t", "]"}]}], "+",
RowBox[{"c2", "*",
RowBox[{
RowBox[{"g", "''"}], "[", "t", "]"}]}], "+",
RowBox[{"c1", "*",
RowBox[{
RowBox[{"g", "'"}], "[", "t", "]"}]}], "+",
RowBox[{"c0", "*",
RowBox[{"g", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq3", "=",
RowBox[{
RowBox[{"c3", "*",
RowBox[{
RowBox[{"s", "'''"}], "[", "t", "]"}]}], "+",
RowBox[{"c2", "*",
RowBox[{
RowBox[{"s", "''"}], "[", "t", "]"}]}], "+",
RowBox[{"c1", "*",
RowBox[{
RowBox[{"s", "'"}], "[", "t", "]"}]}], "+",
RowBox[{"c0", "*",
RowBox[{"s", "[", "t", "]"}]}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.888610071308409*^9, 3.8886101167479486`*^9}, {
3.8886101883551044`*^9, 3.8886102105922594`*^9}, {3.888610448495055*^9,
3.8886104797883587`*^9}, {3.8886105203698797`*^9, 3.8886105364491434`*^9}, {
3.8886396197097797`*^9, 3.8886396286028757`*^9}, {3.8886396652334185`*^9,
3.8886396677489667`*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.888610514596793*^9, 3.8886105280249333`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"f", "[", "t_", "]"}], "=",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "lambda"}], "*", "t"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"g", "[", "t_", "]"}], "=",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}], "*", "lambda", "*", "t"}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "[", "t_", "]"}], "=", "C0"}], "\[IndentingNewLine]"}], "Input",
CellChangeTimes->{{3.8886102274930487`*^9, 3.888610285228719*^9}, {
3.8886396320534163`*^9, 3.8886396466453795`*^9}}],
Cell[BoxData[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "lambda"}], " ", "t"}]]], "Output",
CellChangeTimes->{
3.8886102536824756`*^9, {3.8886103693855305`*^9, 3.888610382750493*^9}, {
3.888610483865599*^9, 3.8886105405400324`*^9}, {3.8886396477787066`*^9,
3.888639674568632*^9}, 3.8886519213157964`*^9, 3.888652502191949*^9}],
Cell[BoxData[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ", "lambda", " ", "t"}]]], "Output",
CellChangeTimes->{
3.8886102536824756`*^9, {3.8886103693855305`*^9, 3.888610382750493*^9}, {
3.888610483865599*^9, 3.8886105405400324`*^9}, {3.8886396477787066`*^9,
3.888639674568632*^9}, 3.8886519213157964`*^9, 3.888652502191949*^9}],
Cell[BoxData["C0"], "Output",
CellChangeTimes->{
3.8886102536824756`*^9, {3.8886103693855305`*^9, 3.888610382750493*^9}, {
3.888610483865599*^9, 3.8886105405400324`*^9}, {3.8886396477787066`*^9,
3.888639674568632*^9}, 3.8886519213157964`*^9, 3.888652502191949*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"eq11", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq1", ",", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "lambda"}], " ", "t"}]]}], "]"}]}]], "Input",
CellChangeTimes->{{3.888610255129234*^9, 3.8886102556358967`*^9}, {
3.888610342177508*^9, 3.88861036114948*^9}}],
Cell[BoxData[
RowBox[{"c0", "-",
RowBox[{"c1", " ", "lambda"}], "+",
RowBox[{"c2", " ",
SuperscriptBox["lambda", "2"]}], "-",
RowBox[{"c3", " ",
SuperscriptBox["lambda", "3"]}]}]], "Output",
CellChangeTimes->{
3.888610256058464*^9, {3.8886103623062468`*^9, 3.888610384276697*^9}, {
3.8886104851039705`*^9, 3.8886104948387394`*^9}, 3.8886105423930387`*^9, {
3.888639652223256*^9, 3.888639676225166*^9}, 3.888651923423294*^9, {
3.8886524988023667`*^9, 3.888652503706332*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "t_", "]"}], "=",
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "2"}], "*", "lambda", "*", "t"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"eq12", "=",
RowBox[{"Coefficient", "[",
RowBox[{"eq2", ",", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], "lambda", " ", "t"}]]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.8886104035101876`*^9, 3.888610403682806*^9}, {
3.888610554657301*^9, 3.8886105663234196`*^9}}],
Cell[BoxData[
RowBox[{"c0", "-",
RowBox[{"2", " ", "c1", " ", "lambda"}], "+",
RowBox[{"4", " ", "c2", " ",
SuperscriptBox["lambda", "2"]}], "-",
RowBox[{"8", " ", "c3", " ",
SuperscriptBox["lambda", "3"]}]}]], "Output",
CellChangeTimes->{{3.888610408376692*^9, 3.8886104108871975`*^9},
3.888610568073242*^9, {3.888639654897622*^9, 3.8886396788653193`*^9},
3.8886519253467073`*^9, 3.888652505028246*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["eq3"], "Input",
CellChangeTimes->{{3.888639685379307*^9, 3.8886396858522964`*^9}}],
Cell[BoxData[
RowBox[{"c0", " ", "C0"}]], "Output",
CellChangeTimes->{3.8886396863234606`*^9, 3.8886525068048925`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"eq11", "\[Equal]", "0"}], ",",
RowBox[{"eq12", "\[Equal]", "0"}], ",",
RowBox[{"eq3", "\[Equal]", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"c1", ",", "c2", ",", "c0"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.888610637995936*^9, 3.88861066278887*^9}, {
3.8886519621728287`*^9, 3.888651984938379*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"c1", "\[Rule]",
RowBox[{"2", " ", "c3", " ",
SuperscriptBox["lambda", "2"]}]}], ",",
RowBox[{"c2", "\[Rule]",
RowBox[{"3", " ", "c3", " ", "lambda"}]}], ",",
RowBox[{"c0", "\[Rule]", "0"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{
3.8886106635743017`*^9, {3.888651978453732*^9, 3.8886519853791556`*^9},
3.8886525099220247`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", "\:7ebf\:6027\:7b97\:5b50\:7684\:9a8c\:8bc1", "*)"}],
"\[IndentingNewLine]",
RowBox[{"eq4", "=",
RowBox[{
RowBox[{
RowBox[{"c3", "*",
RowBox[{
RowBox[{"ss", "'''"}], "[", "t", "]"}]}], "+",
RowBox[{"c2", "*",
RowBox[{
RowBox[{"ss", "''"}], "[", "t", "]"}]}], "+",
RowBox[{"c1", "*",
RowBox[{
RowBox[{"ss", "'"}], "[", "t", "]"}]}], "+",
RowBox[{"c0", "*",
RowBox[{"ss", "[", "t", "]"}]}]}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"c1", "\[Rule]",
RowBox[{"2", " ", "c3", " ",
SuperscriptBox["lambda", "2"]}]}], ",",
RowBox[{"c2", "\[Rule]",
RowBox[{"3", " ", "c3", " ", "lambda"}]}], ",",
RowBox[{"c0", "\[Rule]", "0"}]}], "}"}]}]}]}]], "Input",
CellChangeTimes->{{3.888652069084038*^9, 3.888652077460681*^9},
3.888652230394368*^9, 3.888652273280879*^9, {3.8886525305179205`*^9,
3.888652551620092*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"2", " ", "c3", " ",
SuperscriptBox["lambda", "2"], " ",
RowBox[{
SuperscriptBox["ss", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}], "+",
RowBox[{"3", " ", "c3", " ", "lambda", " ",
RowBox[{
SuperscriptBox["ss", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}], "+",
RowBox[{"c3", " ",
RowBox[{
SuperscriptBox["ss",
TagBox[
RowBox[{"(", "3", ")"}],
Derivative],
MultilineFunction->None], "[", "t", "]"}]}]}]], "Output",
CellChangeTimes->{
3.8886522312084646`*^9, {3.8886522745202084`*^9, 3.888652310265543*^9},
3.888652556956444*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"eq4", "\[Equal]", "0"}], ",",
RowBox[{"ss", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.8886107538707647`*^9, 3.8886107693860435`*^9}, {
3.8886520522434883`*^9, 3.8886520524629774`*^9}, {3.888652083024805*^9,
3.88865208552861*^9}, {3.8886521384120655`*^9, 3.8886522158029213`*^9},
3.8886523024735546`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"ss", "[", "t", "]"}], "\[Rule]",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ", "lambda", " ", "t"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"C", "[", "1", "]"}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"lambda", " ", "t"}]], " ",
RowBox[{"C", "[", "2", "]"}]}]}], ")"}]}],
RowBox[{"2", " ", "lambda"}]]}], "+",
RowBox[{"C", "[", "3", "]"}]}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{
3.88861077032274*^9, 3.888652054987857*^9, {3.8886520861139884`*^9,
3.8886521034150286`*^9}, 3.8886521411296587`*^9, {3.888652183400833*^9,
3.888652237812479*^9}, {3.8886522773384457`*^9, 3.888652312247768*^9},
3.8886525597036858`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"\:5c0f\:7ec3\:4e601", "\:ff1a", " ",
"\:9009\:62e9\:7ebf\:6027\:7b97\:5b50", "\:ff0c",
RowBox[{
"\:5982\:4f55\:9009\:53d6\:7ebf\:6027\:7b97\:5b50\:5305\:62ecC0", "+",
RowBox[{"C1", "*",
RowBox[{"1", "/", "t"}]}], "+",
RowBox[{"C2", "*",
RowBox[{"1", "/",
RowBox[{"t", "^", "2"}]}]}]}]}], " ", "*)"}]], "Input",
CellChangeTimes->{{3.888652609970996*^9, 3.888652637641102*^9}, {
3.888652898532179*^9, 3.8886529067992563`*^9}}]
},
WindowSize->{1520, 815},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (November 7, 2010)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[557, 20, 594, 16, 33, "Input"],
Cell[1154, 38, 1562, 47, 72, "Input"],
Cell[2719, 87, 94, 1, 31, "Input"],
Cell[CellGroupData[{
Cell[2838, 92, 555, 15, 92, "Input"],
Cell[3396, 109, 357, 7, 30, "Output"],
Cell[3756, 118, 367, 7, 30, "Output"],
Cell[4126, 127, 274, 4, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[4437, 136, 330, 8, 33, "Input"],
Cell[4770, 146, 503, 11, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5310, 162, 533, 15, 54, "Input"],
Cell[5846, 179, 430, 9, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6313, 193, 97, 1, 31, "Input"],
Cell[6413, 196, 120, 2, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[6570, 203, 425, 11, 31, "Input"],
Cell[6998, 216, 438, 12, 33, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[7473, 233, 990, 28, 54, "Input"],
Cell[8466, 263, 667, 20, 30, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[9170, 288, 406, 8, 31, "Input"],
Cell[9579, 298, 940, 25, 53, "Output"]
}, Open ]],
Cell[10534, 326, 511, 13, 31, "Input"]
}
]
*)
(* End of internal cache information *)