CodeForces 500E.New Year Domino

探讨一个新年骨牌问题:如何通过调整部分骨牌的高度使得特定骨牌能够被推倒。使用倍增法解决此问题,实现高效算法。

E. New Year Domino

  • 原题

Time Limit 2s

Memory Limit 256M

Celebrating the new year, many people post videos of falling dominoes; Here's a list of them: https://www.youtube.com/results?search_query=New+Years+Dominos

User ainta, who lives in a 2D world, is going to post a video as well.

There are n dominoes on a 2D Cartesian plane. i-th domino (1 ≤ i ≤ n) can be represented as a line segment which is parallel to the y-axis and whose length is li. The lower point of the domino is on the x-axis. Let's denote the x-coordinate of the i-th domino as pi. Dominoes are placed one after another, so p1 < p2 < ... < pn - 1 < pn holds.

User ainta wants to take a video of falling dominoes. To make dominoes fall, he can push a single domino to the right. Then, the domino will fall down drawing a circle-shaped orbit until the line segment totally overlaps with the x-axis.

Also, if the s-th domino touches the t-th domino while falling down, the t-th domino will also fall down towards the right, following the same procedure above. Domino s touches domino t if and only if the segment representing s and t intersects.

See the picture above. If he pushes the leftmost domino to the right, it falls down, touching dominoes (A), (B) and (C). As a result, dominoes (A), (B), (C) will also fall towards the right. However, domino (D) won't be affected by pushing the leftmost domino, but eventually it will fall because it is touched by domino (C) for the first time.

The picture above is an example of falling dominoes. Each red circle denotes a touch of two dominoes.

User ainta has q plans of posting the video. j-th of them starts with pushing the xj-th domino, and lasts until the yj-th domino falls. But sometimes, it could be impossible to achieve such plan, so he has to lengthen some dominoes. It costs one dollar to increase the length of a single domino by 1. User ainta wants to know, for each plan, the minimum cost needed to achieve it. Plans are processed independently, i. e. if domino's length is increased in some plan, it doesn't affect its length in other plans. Set of dominos that will fall except xj-th domino and yj-th domino doesn't matter, but the initial push should be on domino xj.

Input

The first line contains an integer n (2 ≤ n ≤ 2 × 105)— the number of dominoes.

Next n lines describe the dominoes. The i-th line (1 ≤ i ≤ n) contains two space-separated integers pili (1 ≤ pi, li ≤ 109)— the x-coordinate and the length of the i-th domino. It is guaranteed that p1 < p2 < ... < pn - 1 < pn.

The next line contains an integer q (1 ≤ q ≤ 2 × 105) — the number of plans.

Next q lines describe the plans. The j-th line (1 ≤ j ≤ q) contains two space-separated integers xjyj (1 ≤ xj < yj ≤ n). It means the j-th plan is, to push the xj-th domino, and shoot a video until the yj-th domino falls.

Output

For each plan, print a line containing the minimum cost needed to achieve it. If no cost is needed, print 0.

Examples

input1

6
1 5
3 3
4 4
9 2
10 1
12 1
4
1 2
2 4
2 5
2 6

output1

0
1
1
2

Note

Consider the example. The dominoes are set like the picture below.

Let's take a look at the 4th plan. To make the 6th domino fall by pushing the 2nd domino, the length of the 3rd domino (whose x-coordinate is 4) should be increased by 1, and the 5th domino (whose x-coordinate is 9) should be increased by 1 (other option is to increase 4th domino instead of 5th also by 1). Then, the dominoes will fall like in the picture below. Each cross denotes a touch between two dominoes.

  • 题意

给你domino骨牌的坐标和高度(按坐标从小到大给出),问你从推到x,要把其中的一些骨牌一共增加多少长度才可以使y倒下。

  • Solution

一开始想的太简单了,竟然只打了一个离散化和前缀和。

#include <cstdio>
#include <algorithm>
#define N 200010

using namespace std;
int n, p[N], l[N], po[N], cnt, f[N], u[N];
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; ++i) {
		scanf("%d%d", &p[i], &l[i]);
		po[++cnt] = p[i];
		po[++cnt] = p[i] + l[i];
	}
	sort(po + 1, po + cnt + 1);
	int m = unique(po + 1, po + cnt + 1) - (po + 1);
	printf("%d\n", m);
	for(int i = 1; i <= m; ++i) {
		printf("%d ", po[i]);
	}
	printf("\n");
	for (int i = 1; i <= n; ++i) {
		int o = lower_bound(po + 1, po + m + 1, p[i]) - po;
		f[o]++;
		printf("%d ", o);
		o = lower_bound(po + 1, po + m + 1, p[i] + l[i]) - po;
		f[o]--;
		printf("%d\n", o);
	}
	for (int i = 1; i <= m; ++i) {
		if (f[i] > 0) f[i] += f[i - 1];
		else if (f[i] < 0) {
			if (f[i - 1] + f[i] == 0) {
				u[i + 1] = po[i + 1] - po[i];
			}
			f[i] += f[i - 1];
		}
		else u[i + 1] = po[i + 1] - po[i];
		printf("%d ", f[i]);
	}
	printf("\n");
	for (int i = 1; i <= m; ++i) {
		u[i] += u[i - 1];
		printf("%d ", u[i]);
	}
	printf("\n");
	int q, ll, rr;
	scanf("%d", &q);
	for (int i = 1; i <= q; ++i) {
		scanf("%d%d", &ll, &rr);
		ll = lower_bound(po + 1, po + m + 1, p[ll]) - po;
		rr = lower_bound(po + 1, po + m + 1, p[rr]) - po;
		printf("%d %d %d\n", u[rr] - u[ll], ll, rr);
	}
	return 0;
}

后来发现有问题,因为如果在x与y之间有一个位置是被x前面的很高的骨牌覆盖掉的,就不能算。

很气啊,于是参考了一下来自: 码代码的猿猿的AC之路,后面半篇倍增是一种很好的方法(有码风强迫症)

#include <cstdio>
#define N 200005
#define INF 2100000000
 
using namespace std;

int n, dn, a[N], b[N], d[N], p[N][20], q[N][20];
 
int main() {
	scanf("%d", &n);
	for (int i = 0; i < n; i++){
		scanf("%d%d", &a[i], &b[i]);
	}
	a[n] = INF;
	d[dn++] = n;
	p[n][0] = n;
	for (int i = n - 1; i >= 0; i--) {
		while (a[d[dn - 1]] + b[d[dn - 1]] <= a[i] + b[i]) dn--;
		p[i][0] = d[dn - 1];
		if (a[i] + b[i] >= a[d[dn - 1]]) q[i][0] = 0;
		else q[i][0] = a[d[dn - 1]] - a[i] - b[i];
		d[dn++] = i;
	}
	for (int j = 1; j < 20; j++) {
		for (int i = n; i >= 0; i--) {
			p[i][j] = p[p[i][j - 1]][j - 1];
			q[i][j] = q[i][j - 1] + q[p[i][j - 1]][j - 1];
		}
	}
	int t;
	scanf("%d",&t);
	while (t--) {
		int l, r, ans = 0;
		scanf("%d%d", &l, &r);
		l--;
		r--;
		for (int i = 19; i >= 0; i--) {
			if (p[l][i] <= r) {
				ans += q[l][i];
				l = p[l][i];
			}
		}
		printf("%d\n", ans);
	}
    return 0;
}

 

通过短时倒谱(Cepstrogram)计算进行时-倒频分析研究(Matlab代码实现)内容概要:本文主要介绍了一项关于短时倒谱(Cepstrogram)计算在时-倒频分析中的研究,并提供了相应的Matlab代码实现。通过短时倒谱分析方法,能够有效提取信号在时间与倒频率域的特征,适用于语音、机械振动、生物医学等领域的信号处理与故障诊断。文中阐述了倒谱分析的基本原理、短时倒谱的计算流程及其在实际工程中的应用价值,展示了如何利用Matlab进行时-倒频图的可视化与分析,帮助研究人员深入理解非平稳信号的周期性成分与谐波结构。; 适合人群:具备一定信号处理基础,熟悉Matlab编程,从事电子信息、机械工程、生物医学或通信等相关领域科研工作的研究生、工程师及科研人员。; 使用场景及目标:①掌握倒谱分析与短时倒谱的基本理论及其与傅里叶变换的关系;②学习如何用Matlab实现Cepstrogram并应用于实际信号的周期性特征提取与故障诊断;③为语音识别、机械设备状态监测、振动信号分析等研究提供技术支持与方法参考; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,先理解倒谱的基本概念再逐步实现短时倒谱分析,注意参数设置如窗长、重叠率等对结果的影响,同时可将该方法与其他时频分析方法(如STFT、小波变换)进行对比,以提升对信号特征的理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值