Description
In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.
Input
Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.
Output
For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.
Sample Input
2
8
12
100
200
Sample Output
3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251
解答
该题算法很简单,主要用到的递推式是
rst[i] = rst[i-1] + 2*rst[i-2];
需要注意两点
- 结果太大,用long long 和double都存不下,用一个string来进行加法运算。
- n = 0时, 返回1
#include<cstdio>
#include<string>
#include<iostream>
using namespace std;
string rst[300];
string Add(string s1,string s2)
{
if (s1.length()<s2.length())
swap(s1,s2);
int i,j;
for(i=s1.length()-1,j=s2.length()-1;i>=0;i--,j--)
{
s1[i]=s1[i]+(j>=0?s2[j]-'0':0);
if(s1[i]-'0'>=10)
{
s1[i]=(s1[i]-'0')%10+'0';
if(i) s1[i-1]++;
else s1='1'+s1;
}
}
return s1;
}
int main()
{
int n;
rst[0] = "1";
rst[1] = "1";
rst[2] = "3";
for(int i = 3; i < 300; i++)
//rst[i] = rst[i-1] + 2*rst[i-2];
rst[i] = Add(Add(rst[i-1], rst[i-2]), rst[i-2]);
while(scanf("%d", &n) != EOF)
{
cout << rst[n] << endl;
}
return 0;
}