ZOJ Problem Set - 1074
To the Max
Time Limit: 2 Seconds Memory Limit: 65536 KB
Problem
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Example
Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Output
15
/*
用二维数组sum来把最大子矩阵转化为最大子串和问题即可
因为对n行的矩阵,子矩阵肯定是1~n行 所以办法就是把所有行看出一个单位进行纵放心取子串
对于每个行子串展开看即为一个矩阵,把矩阵上下相加,变成了一个横向的数组,进行求最大子串和
(eg:3行m列,则1,2,3行单独求一遍最大子串,第一行加上第二行求一遍,2+3,1+3求一遍,然后1+2+3求一遍,取最大的即可)
*/
#include<iostream>
#include<cstdio>
#define N 1001
#include<cstring>
#define sub(i,a,b) sum[b][i]-sum[a-1][i]
using namespace std;
int n;
int M[N][N];
int sum[N][N];//sum[i][j]表示
int ans=-0x7fffffff;
int dp;
void IN(void){
scanf("%d",&n);
for(int i=1;i<=n;i++){//养成好习惯从1开始,很多时候需要用到0
for(int j=1;j<=n;j++){
scanf("%d",&M[i][j]);
sum[i][j] = sum[i-1][j]+M[i][j];//前缀和
}
}
}
void OUT(void){
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){//从i行到j行
//printf("case %d to %d\n",i,j);
for(int k=1;k<=n;k++){//k 从左往右
if(k==1)dp=sub(k,i,j);
else dp=max(dp+sub(k,i,j),sub(k,i,j));
if(dp>ans){
ans=dp;//printf("from line %d to %d , when k is %d , update \n",i,j,k);
//printf("ans is to %d\n",ans);
}
}
}
}
cout<<ans<<endl;
}
int main()
{
IN();
OUT();
return 0;
}
/*
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
out 15
*/