Pytorch之ResNeXt网络的搭建


🎉进入深度神经网络与PyTorch进阶专栏 | 🚀查看更多专栏内容


cardinality

cardinality, 指的是repeat layer的个数,下图右边cardinality为32。左图是ResNet的基本结构,输入channel size为64,右图是ResNeXt的基本结构,输入channel size是128,但两者具有相近的参数量。
在这里插入图片描述

有三种等价的ResNeXt Block,如下图,a是ResNeXt基本单元,如果把输出那里的1x1合并到一起,得到等价网络b拥有和Inception-ResNet相似的结构,

而进一步把输入的1x1也合并到一起,得到等价网络c则和通道分组卷积的网络有相似的结构。(分组卷积的含义:我们假设上一层的feature map总共有N个,即通道数channel=N,也就是说上一层有N个卷积核。再假设群卷积的群数目M。那么该群卷积层的操作就是,先将channel分成M份。每

### 构建ResNeXt50网络 #### 一、理解ResNeXt架构原理 ResNeXt(Residual Next)是在ResNet的基础上进行了改进,通过引入分组卷积的概念来增加网络宽度而不是深度。在ResNet中,输入的具有256个通道的特征经过1×1卷积压缩4倍到64个通道,之后3×3的卷积核用于处理特征,再经1×1卷积扩大通道数与原特征残差连接后输出[^3]。 而在ResNeXt中,采用了多个平行分支的设计思路,在每个分支内执行相同的转换操作,并最终将这些分支的结果相加作为该模块的整体输出。这种设计允许模型自动探索最佳的操作组合方式,从而提高了表达能力而不显著增加计算成本。 #### 二、PyTorch实现ResNeXt50的具体步骤 为了更好地展示如何利用Python中的PyTorch库创建一个完整的ResNeXt50模型,下面给出了一段详细的代码示例: ```python import torch.nn as nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=32): super(Bottleneck, self).__init__() # 定义基础路径上的三个连续卷积层 self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes * 2) # 使用cardinality参数控制分组数量 self.conv2 = nn.Conv2d( planes * 2, planes * 2, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False ) self.bn2 = nn.BatchNorm2d(planes * 2) self.conv3 = nn.Conv2d(planes * 2, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def make_layer(block, inplanes, planes, blocks, stride=1, cardinality=32): layers = [] # 创建第一个Bottleneck block实例时可能需要调整维度大小 downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers.append(block(inplanes, planes, stride, downsample, cardinality)) # 对于后续的blocks只需要保持相同尺寸即可 inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(inplanes, planes, cardinality=cardinality)) return nn.Sequential(*layers) class ResNeXt(nn.Module): def __init__(self, block, layers, num_classes=1000, cardinality=32): self.cardinality = cardinality self.inplanes = 64 super(ResNeXt, self).__init__() # 初始7x7卷积+最大池化 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 堆叠四个不同尺度下的resnext layer self.layer1 = make_layer(block, self.inplanes, 64, layers[0], cardinality=self.cardinality) self.layer2 = make_layer(block, self.inplanes*block.expansion, 128, layers[1], stride=2, cardinality=self.cardinality) self.layer3 = make_layer(block, self.inplanes*(block.expansion**2), 256, layers[2], stride=2, cardinality=self.cardinality) self.layer4 = make_layer(block, self.inplanes*(block.expansion**3), 512, layers[3], stride=2, cardinality=self.cardinality) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # 初始化权重 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') def _forward_impl(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x): return self._forward_impl(x) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): model = ResNeXt(Bottleneck, [3, 4, 6, 3], cardinality=32, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls['resnext50_32x4d'],progress=progress) model.load_state_dict(state_dict) return model ``` 这段代码定义了一个名为`ResNeXt` 的类,其中包含了构建整个ResNeXt50所需的主要组件——瓶颈结构(`Bottleneck`)和堆叠函数(`make_layer`)。此外还实现了预训练版本加载的功能以便快速上手使用已经过良好调优过的初始权值设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值