前言
上一篇《从零搭建Pytorch模型教程(一)数据读取》中介绍了classdataset的几个要点,由哪些部分组成,每个部分需要完成哪些事情,如何进行数据增强,如何实现自己设计的数据增强。然后,介绍了分布式训练的数据加载方式,数据读取的整个流程,当面对超大数据集时,内存不足的改进思路。
本文介绍了如何搭建神经网络,构建网络的几种方式,前向传播的过程,几种初始化方式,如何加载预训练模型的指定层等内容。本文以CNN为例,下一篇介绍如何搭建Transformer网络。
搭建CNN网络
首先来看一个CNN网络 (以YOLO_v1的一部分层为例)。
class Flatten(nn.Module):
def __init__(self):
super(Flatten,self).__init__()
def forward(self,x):
return x.view(x.size(0),-1)
class Yolo_v1(nn.Module):
def __init__(self, num_class):
super(Yolo_v1,self).__init__()
C = num_class
self.conv_layer1=nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=64,kernel_size=7,stride=1,padding=7//2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=2,stride=2)
)
self.conv_layer2=nn.Sequential(
nn.Conv2d(in_channels=64,out_channels=192,kernel_size=3,stride=1,padding=3//2),
nn.BatchNorm2d(192),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=2,stride=2)
)
#为了简便,这里省去了很多层
self.flatten = Flatten()
self.conn_layer1 = nn.Sequential(
nn.Linear(in_features=7*7*1024,out_features=4096),
nn.Dropout(0.5),nn.LeakyReLU(0.1))
self.conn_layer2 = nn.Sequential(nn.Linear(in_features=4096,out_features=7*7*(2*5 + C)))
self._initialize_weights()
def forward(self,input):
conv_layer1 = self.conv_layer1(input)
conv_layer2 = self.conv_layer2(conv_layer1)
flatten = self.flatten(conv_layer2)
conn_layer1 = self.conn_layer1(flatten)
output = self.conn_layer2(conn_layer1)
return output
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()