题目:
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
方法: 如果集合为空,只有一种BST,即空树,UniqueTrees[0] =1 如果集合仅有一个元素,只有一种BST,即为单个节点UniqueTrees[1] = 1 UniqueTrees[2] = UniqueTrees[0] * UniqueTrees[1] (1为根的情况)+ UniqueTrees[1] * UniqueTrees[0] (2为根的情况。再看一遍三个元素的数组,可以发现BST的取值方式如下:
UniqueTrees[3] = UniqueTrees[0]*UniqueTrees[2] (1为根的情况)
+ UniqueTrees[1]*UniqueTrees[1] (2为根的情况)
+ UniqueTrees[2]*UniqueTrees[0] (3为根的情况)
所以,由此观察,可以得出UniqueTrees的递推公式为UniqueTrees[i] = ∑ UniqueTrees[0...k] * [i-1-k] k取值范围 0<= k <=(i-1)
”’
直接用递归求解会超时,所以用动态规划求解。
代码如下:public class Solution { public int numTrees(int n) { if(n == 0) return 1; int[] dp=new int[n+1]; dp[0]=1; dp[1]=1; for(int i=2;i<n+1;i++) { for(int j=0;j<i;j++) dp[i]+=dp[j]*dp[i-j-1]; } return dp[n]; } }