作用
1无向图
2有向图
代码记录
无向图
s1 = [1,2,3,4];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)
% 注意哦,编号最好是从1开始连续编号
s1 = [1,2,3,4];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)
% 注意字符串元胞数组是用大括号包起来的哦
s2 = {'学校','电影院','网吧','酒店'};
t2 = {'电影院','酒店','酒店','KTV'};
G2 = graph(s2, t2);
plot(G2, 'linewidth', 2) % 设置线的宽度
% 下面的命令是在画图后不显示坐标
set( gca, 'XTick', [], 'YTick', [] );
% (2)有权重
% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = graph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2)
set( gca, 'XTick', [], 'YTick', [] );
有向图
s = [1,2,3,4,1];
t = [2,3,1,1,4];
G = digraph(s, t);
plot(G)
set( gca, 'XTick', [], 'YTick', [] );
% 有权图 digraph(s,t,w)
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = digraph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2)
set( gca, 'XTick', [], 'YTick', [] );
Floyd_algorithm
function [dist,path] = Floyd_algorithm(D)
%% 该函数用于求解一个权重邻接矩阵任意两个节点之间的最短路径
% 输入:
% D是权重邻接矩阵
% 输出:
% dist是最短距离矩阵,其元素dist_ij表示表示i,j两个节点的最短距离
% path是路径矩阵,其元素path_ij表示起点为i,终点为j的两个节点之间的最短路径要经过的节点
n = size(D,1); % 计算节点的个数
% 初始化dist矩阵
dist = D;
% 下面我们来初始化path矩阵
path = zeros(n);
for j = 1:n
path(:,j) = j; % 将第j列的元素变为j
end
for i = 1:n
path(i,i) = -1; % 将主对角线元素变为-1
end
% 下面开始三个循环
for k=1:n % 中间节点k从1- n 循环
for i=1:n % 起始节点i从1- n 循环
for j=1:n % 终点节点j从1-n 循环
if dist(i,j)>dist(i,k)+dist(k,j) % 如果i,j两个节点间的最短距离大于i和k的最短距离+k和j的最短距离
dist(i,j)=dist(i,k)+dist(k,j); % 那么我们就令这两个较短的距离之和取代i,j两点之间的最短距离
path(i,j)=path(i,k); % 起点为i,终点为j的两个节点之间的最短路径要经过的节点更新为path(i,k)
% 注意,上面一行语句不能写成path(i,j) = k; 这是网上很多地方都容易犯的错误,在PPT11页中会告诉大家为什么不能这么写
end
end
end
end
end