深度强化学习中深度Q网络(Q-Learning+CNN)的讲解以及在Atari游戏中的实战(超详细 附源码)

本文深入探讨了深度强化学习中的DQN算法,介绍了其核心思想、模型架构、数据预处理、训练过程以及优缺点。通过在Atari游戏Breakout和Asterix中的应用,展示了DQN算法的性能。同时,提供了部分源代码示例,展示如何实现DQN算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要源码请点赞收藏关注后评论区留下QQ~~~

深度强化学习将深度学习的感知(预测能力)与强化学习的决策能力相结合,利用深度神经网络具有有效识别高维数据的能力,使得强化学习算法在处理高纬度状态空间任务中更加有效

一、DQN算法简介

1:核心思想

深度Q网络算法(DQN)是一种经典的基于值函数的深度强化学习算法,它将卷积神经网络与Q-Learning算法相结合,利用CNN对图像的强大表征能力,将视频帧视为强化学习中的状态输入网络,然后由网络输出离散的动作值函数,Agent再根据动作值函数选择对应的动作

DQN利用CNN输入原始图像数据,能够在不依赖于任意特定问题的情况下,采用相同的算法模型,在广泛的问题中获得较好的学习效果,常用于处理Atari游戏

2:模型架构

深度Q网络模型架构的输入是距离当前时刻最近的连续4帧预处理后的图像,该输入信号经过3哥卷积层和2个全连接层的非线性变换,变换成低维的,抽象的特征表达,并最终在输出层产生每个动作对应的Q值函数

具体架构如下

1:输入层

2:对输入层进行卷积操作

3:对第一隐藏层的输出进行卷积操作

4:对第二隐藏层的输出进行卷积操作

5:第三隐藏层与第四隐藏层的全连接操作

6:第四隐藏层与输出层的全连接操作

3:数据预处理 

包括以下几个部分

1:图像处理

2:动态信息预处理

3:游戏得分预处理

4:游戏随机开始的预处理

二、训练算法 

 DQN之所以能够较好的将深度学习与强化学习相结合,是因为它引入了三个核心技术 

1:目标函数

使用卷积神经网络结合全连接作为动作值函数的逼近器,实现端到端的效果,输入为视频画面,输出为有限数量的动作值函数

2:目标网络

设置目标网络来单独处理TD误差 使得目标值相对稳定

3:经验回放机制

有效解决数据间的相关性和非静态问题,使得网络输入的信息满足独立同分布的条件

 DQN训练流程图如下

 三、DQN算法优缺点

DQN算法的优点在于:算法通用性强,是一种端到端的处理方式,可为监督学习产生大量的样本。其缺点在于:无法应用于连续动作控制,只能处理具有短时记忆的问题,无法处理需长时记忆的问题,且算法不一定收敛,需要仔细调参

四、DQN在Breakout、Asterix游戏中的实战

接下来通过Atari 2600游戏任务中的Breakout,Asterix游戏来验证DQN算法的性能。

在训练过程中 Agent实行贪心策略,开始值为1并与环境进行交互,并将交互的样本经验保存在经验池中,点对于每个Atari游戏,DQN算法训练1000000时间步,每经历10000时间步,Agent将行为网络的参数复杂到目标网络,每经历1000时间步,模型进行一次策略性能评估

可视化如下 

训练阶段的实验数据如下

可以看出 有固定目标值的Q网络可以提高训练的稳定性和收敛性

loss变化如下 

 

 五、代码

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值