lj重现0.01

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
classdef HybridCyberAttack properties dos_params struct deception_params struct attack_log struct internal_state struct end methods function obj = HybridCyberAttack(varargin) p = inputParser; addParameter(p, 's_m', 0.8, @isnumeric); addParameter(p, 'l_M', 3.5, @isnumeric); addParameter(p, 'theta1', 0.16, @isnumeric); addParameter(p, 'theta2', 0.5, @isnumeric); addParameter(p, 'gamma_bar', 0.1, @isnumeric); addParameter(p, 'Phi', [1, 0; 0, 0.8], @ismatrix); parse(p, varargin{:}); obj.dos_params = struct(); obj.dos_params.attack_type = 'aperiodic'; obj.dos_params.s_m = p.Results.s_m; obj.dos_params.l_M = p.Results.l_M; obj.dos_params.theta1 = p.Results.theta1; obj.dos_params.theta2 = p.Results.theta2; obj.deception_params = struct(); obj.deception_params.gamma_bar = p.Results.gamma_bar; obj.deception_params.Phi = p.Results.Phi; obj.attack_log = struct(); obj.attack_log.dos_events = []; obj.attack_log.deception_events = []; obj.attack_log.time = []; obj.attack_log.deception_energy = []; % 新增:记录每次欺骗攻击的能量 obj.internal_state = struct(); obj.internal_state.last_switch_time = 0; obj.internal_state.current_dos_state = 0; obj.internal_state.attack_count = 0; end function [D_dos, dos_info] = generateDoSAttack(obj, t) last_switch_time = obj.internal_state.last_switch_time; current_state = obj.internal_state.current_dos_state; attack_count = obj.internal_state.attack_count; if current_state == 0 sleep_time = obj.dos_params.s_m + obj.dos_params.s_m * rand(); if t - last_switch_time >= sleep_time current_state = 1; last_switch_time = t; attack_count = attack_count + 1; obj.attack_log.dos_events = [obj.attack_log.dos_events; t, 1]; end else active_time = obj.dos_params.l_M * rand(); if t - last_switch_time >= active_time current_state = 0; last_switch_time = t; obj.attack_log.dos_events = [obj.attack_log.dos_events; t, 0]; end end obj.internal_state.last_switch_time = last_switch_time; obj.internal_state.current_dos_state = current_state; obj.internal_state.attack_count = attack_count; D_dos = current_state; dos_info = struct('state', current_state, 'count', attack_count); end function [gamma_val, f_attack] = generateDeceptionAttack(obj, x, t) if rand() <= obj.deception_params.gamma_bar gamma_val = 1; f_attack = [-tanh(x(1)); -tanh(0.8 * x(2))]; current_energy = norm(f_attack, 2); max_energy = norm(obj.deception_params.Phi * x, 2); if current_energy > max_energy f_attack = f_attack * (max_energy / current_energy); end obj.attack_log.deception_events = [obj.attack_log.deception_events; t, 1]; obj.attack_log.deception_energy = [obj.attack_log.deception_energy; current_energy]; else gamma_val = 0; f_attack = zeros(size(x)); obj.attack_log.deception_events = [obj.attack_log.deception_events; t, 0]; obj.attack_log.deception_energy = [obj.attack_log.deception_energy; 0]; end end function [x_tilde, attack_info] = applyHybridAttack(obj, x_true, t) [D_dos, dos_info] = obj.generateDoSAttack(t); [gamma_val, f_attack] = obj.generateDeceptionAttack(x_true, t); if D_dos == 1 x_tilde = NaN(size(x_true)); else if gamma_val == 1 x_tilde = f_attack; else x_tilde = x_true; end end obj.attack_log.time = [obj.attack_log.time; t]; attack_info = struct(); attack_info.dos_status = D_dos; attack_info.gamma_status = gamma_val; attack_info.f_attack = f_attack; attack_info.time = t; attack_info.original_signal = x_true; attack_info.attacked_signal = x_tilde; end function is_valid = checkAttackFrequency(obj, t) dos_events = obj.attack_log.dos_events; if ~isempty(dos_events) switch_count = sum(dos_events(:,1) <= t); else switch_count = 0; end max_allowed = obj.dos_params.theta1 + t / obj.dos_params.theta2; is_valid = switch_count <= max_allowed; if ~is_valid warning('DoS攻击频率超过允许范围: %d > %.2f', switch_count, max_allowed); end end function reset(obj) obj.attack_log.dos_events = []; obj.attack_log.deception_events = []; obj.attack_log.time = []; obj.attack_log.deception_energy = []; obj.internal_state.last_switch_time = 0; obj.internal_state.current_dos_state = 0; obj.internal_state.attack_count = 0; end function closeOpenAttacks(obj, t_end) if obj.internal_state.current_dos_state == 1 obj.attack_log.dos_events = [obj.attack_log.dos_events; t_end, 0]; obj.internal_state.current_dos_state = 0; end end function stats = getAttackStatistics(obj) stats = struct(); dos_events = obj.attack_log.dos_events; if ~isempty(dos_events) start_times = dos_events(dos_events(:,2)==1, 1); end_times = dos_events(dos_events(:,2)==0, 1); if length(start_times) > length(end_times) start_times = start_times(1:end-1); elseif length(end_times) > length(start_times) end_times = end_times(2:end); end stats.dos_attack_count = length(start_times); stats.dos_total_duration = sum(end_times - start_times); else stats.dos_attack_count = 0; stats.dos_total_duration = 0; end if ~isempty(obj.attack_log.deception_events) stats.deception_attack_count = sum(obj.attack_log.deception_events(:,2)==1); stats.deception_ratio = stats.deception_attack_count / length(obj.attack_log.deception_events); if stats.deception_attack_count > 0 stats.avg_deception_energy = mean(obj.attack_log.deception_energy(obj.attack_log.deception_events(:,2)==1)); else stats.avg_deception_energy = 0; end else stats.deception_attack_count = 0; stats.deception_ratio = 0; stats.avg_deception_energy = 0; end if ~isempty(obj.attack_log.time) stats.total_simulation_time = max(obj.attack_log.time) - min(obj.attack_log.time); else stats.total_simulation_time = 0; end end function attack_strength = computeAttackStrength(obj) stats = obj.getAttackStatistics(); if stats.total_simulation_time > 0 dos_strength = stats.dos_total_duration / stats.total_simulation_time; else dos_strength = 0; end attack_strength = struct(... 'dos_strength', dos_strength, ... 'avg_deception_energy', stats.avg_deception_energy); end end endclassdef AdaptiveFuzzyEventTrigger1gai properties % 事件触发参数 h % 采样间隔h=0.01 Omega % 模糊加权矩阵 Ω_j^χ(基于模糊状态的模糊ET加权矩阵) psi_min % 最小阈值 ψ(给定为0.1) psi_max % 最大阈值 ψ̄(给定为0.3) varpi % 误差灵敏度参数 ϖ(给定为5) M % 基础阈值标量 M%%%%%%%%%%%%%%%%%%%???(哪里给出) % 事件触发状态 last_trigger_time % 上次触发时间 trigger_count % 触发次数统计 trigger_events % 触发事件记录(包含相关信息) current_psi % 当前阈值函数值 release_instants % 释放时刻记录(记录事件释放(即触发)的具体时刻) % 关联对象 observer % 关联的观测器对象,提供状态估计 fuzzy_system % 关联的模糊系统对象,提供系统动态和隶属度计算 cyber_attack % 关联的攻击对象,提供攻击状态信息 % 优化参数 optimization_config % 结构体,优化算法配置 search_results % 存储优化结果 % 攻击时间表 attack_schedule % 攻击时间表 Υ_{1,n}, Υ_{2,n},结构体,包含:Upsilon1:正常通信时段,Upsilon2:DoS 攻击时段 % 配置 verbose % 详细输出标志 end methods function obj = AdaptiveFuzzyEventTrigger1gai(varargin) % 构造函数 p = inputParser; addParameter(p, 'h', 0.01, @isnumeric); addParameter(p, 'psi_min', 0.1, @isnumeric); addParameter(p, 'psi_max', 0.3, @isnumeric); addParameter(p, 'varpi', 5.0, @isnumeric); addParameter(p, 'M', 0.5, @isnumeric); addParameter(p, 'observer', [], @(x) isa(x, 'SwitchedFuzzyObserver') || isempty(x)); addParameter(p, 'fuzzy_system', [], @(x) isa(x, 'IntervalType2FuzzySystem') || isempty(x)); addParameter(p, 'cyber_attack', [], @(x) isa(x, 'HybridCyberAttack') || isempty(x)); addParameter(p, 'verbose', false, @islogical); parse(p, varargin{:}); % 初始化参数 obj.h = p.Results.h; obj.psi_min = p.Results.psi_min; obj.psi_max = p.Results.psi_max; obj.varpi = p.Results.varpi; obj.M = p.Results.M; obj.observer = p.Results.observer; obj.fuzzy_system = p.Results.fuzzy_system; obj.cyber_attack = p.Results.cyber_attack; obj.verbose = p.Results.verbose; % 初始化模糊加权矩阵 if ~isempty(obj.observer) n = obj.observer.n; obj.Omega = cell(obj.observer.r, 1); for j = 1:obj.observer.r obj.Omega{j} = eye(n); end else obj.Omega = {eye(2)}; % 如果没有关联观测器,使用默认设置 end % 初始化状态 obj.last_trigger_time = 0; obj.trigger_count = 0; obj.trigger_events = struct(... 'time', {}, ... 'state', {}, ... 'error', {}, ... 'chi', {}, ... 'left_term', {}, ... 'right_term', {}, ... 'psi_value', {}, ... 'is_trigger', {}); obj.release_instants = []; obj.current_psi = p.Results.psi_max; % 当前自适应阈值函数ψ的值 % 初始化攻击时间表 obj.attack_schedule = struct('Upsilon1', [], 'Upsilon2', []); % 优化配置 obj.optimization_config = struct(... 'max_iterations', 100, ... 'tolerance', 1e-4, ... 'learning_rate', 0.01, ... 'search_step', 0.1, ... 'search_upper_bound', 5.0, ... 'target_release', 50, ... % 目标释放次数 r̄_s 'max_k', 1000 ... % 最大迭代次数 k̄ ); obj.search_results = struct(); end function obj = reset(obj) % 重置事件触发器 obj.last_trigger_time = 0; obj.trigger_count = 0; obj.trigger_events = struct(... 'time', {}, ... 'state', {}, ... 'error', {}, ... 'chi', {}, ... 'left_term', {}, ... 'right_term', {}, ... 'psi_value', {}, ... 'is_trigger', {}); obj.release_instants = []; obj.current_psi = obj.psi_max; end function obj = setAttackSchedule(obj, Upsilon1, Upsilon2) % 设置攻击时间表 Υ_{1,n}, Υ_{2,n} obj.attack_schedule.Upsilon1 = Upsilon1; % 正常通信时段 obj.attack_schedule.Upsilon2 = Upsilon2; % DoS攻击时段 end function obj = setOmegaMatrix(obj, j, Omega_j) % 设置第j条规则的模糊加权矩阵 if j <= length(obj.Omega) obj.Omega{j} = Omega_j;%Omega_j:要设置的加权矩阵(n×n 矩阵) else error('规则索引超出范围'); end end function psi_value = computeAdaptivePsi(obj, e_error) % 计算自适应阈值函数 error_norm_sq = norm(e_error, 2)^2; exp_term = exp(-obj.varpi * error_norm_sq); if error_norm_sq > obj.M / obj.varpi numerator = obj.psi_min * (1 - exp_term) + 2 * obj.psi_max * exp_term; denominator = 1 + exp_term; psi_value = numerator / denominator; else psi_value = obj.psi_max; end % 确保在范围内%%%%%%%%%%%%%%% psi_value = max(obj.psi_min, min(obj.psi_max, psi_value)); end function [is_trigger, psi_value] = checkTriggerCondition(obj, t, x_sigma_current, e_error) % 检查DoS攻击 [D_dos, ~] = obj.cyber_attack.generateDoSAttack(t); if D_dos == 1 is_trigger = false; psi_value = obj.psi_min; % 记录事件 obj.recordEvent(t, x_sigma_current, e_error, [], [], [], psi_value, is_trigger); return; end % 计算隶属度 chi = obj.computeMembershipDegrees(x_sigma_current); % 计算加权矩阵 Omega_avg = zeros(size(obj.Omega{1})); for j = 1:length(obj.Omega) Omega_avg = Omega_avg + chi(j) * obj.Omega{j}; end % 计算平方根 Omega_sqrt = sqrtm(Omega_avg); % 计算左边项 left_term = norm(Omega_sqrt * e_error, 2)^2; % 计算自适应阈值 if obj.varpi * norm(e_error, 2)^2 <= obj.M psi_value = obj.psi_min; else psi_value = obj.computeAdaptivePsi(e_error); end obj.current_psi = psi_value; % 计算右边项 right_term = psi_value * norm(Omega_sqrt * x_sigma_current, 2)^2; % 检查触发条件 is_trigger = (left_term > right_term); % 更新触发状态 if is_trigger obj.trigger_count = obj.trigger_count + 1; obj.last_trigger_time = t; obj.release_instants = [obj.release_instants; t]; end % 记录事件 obj.recordEvent(t, x_sigma_current, e_error, chi, left_term, right_term, psi_value, is_trigger); end function chi = computeMembershipDegrees(obj, x) % 计算规则隶属度 if isempty(obj.fuzzy_system) error('未关联模糊系统'); end r = obj.fuzzy_system.r; p = obj.fuzzy_system.p; chi = zeros(r, 1); % 计算前件变量值 rho = zeros(p, 1); for j = 1:p premise_func = obj.fuzzy_system.premise_vars{j}; rho(j) = premise_func(x); end % 计算每条规则的激活强度 for l = 1:r activation = 1;% 初始化为1(乘法单位元) for k = 1:p % 获取隶属函数 lower_mem = obj.fuzzy_system.lower_MF{l, k}(rho(k)); upper_mem = obj.fuzzy_system.upper_MF{l, k}(rho(k)); activation = min(activation, min(lower_mem, upper_mem)); end chi(l) = activation; end % 归一化 total_activation = sum(chi); if total_activation > 0 chi = chi / total_activation; else chi = ones(r, 1) / r; end end function recordEvent(obj, t, state, error, chi, left, right, psi, is_trigger) % 创建事件数据结构 event_data = struct(... 'time', t, ... 'state', state, ... 'error', error, ... 'chi', chi, ... 'left_term', left, ... 'right_term', right, ... 'psi_value', psi, ... 'is_trigger', is_trigger); % 添加到事件记录 if isempty(obj.trigger_events) obj.trigger_events = event_data; else obj.trigger_events(end+1) = event_data; end % 显示日志 if obj.verbose fprintf('时间 %.2f: 左项=%.4f, 右项=%.4f, 触发=%d\n', ... t, left, right, is_trigger); end end function [optimal_M, optimal_release] = optimizeMAlgorithm1(obj, x0, total_time) % 实现算法1:M的优化算法 % 输入: x0 - 初始状态, total_time - 总仿真时间 % 输出: optimal_M - 最优M, optimal_release - 最优释放次数 %从优化配置中获取搜索参数 config = obj.optimization_config; search_step = config.search_step; search_upper = config.search_upper_bound; target_release = config.target_release;%目标释放次数 % 搜索空间设置 m_values = 0:search_step:search_upper;%生成 M 值的搜索范围 release_counts = zeros(size(m_values));%存储每个 M 值对应的释放次数 best_M = obj.M; best_release = inf;%将最佳释放次数初始化为无穷大 fprintf('开始优化M...\n'); fprintf('m0\t释放次数\t是否满足条件\n');%定义结果表格的列标题 fprintf('--------------------------------\n'); for idx = 1:length(m_values) m0 = m_values(idx); obj.M = m0;%获取当前 M 值并设置到对象中 % 运行仿真计算释放次数 release_count = obj.runSimulationForM(x0, total_time); release_counts(idx) = release_count; % 检查是否满足条件 r_s^{[m0]} < r̄_s meets_condition = release_count < target_release; %使用文本字符代替特殊符号 status = '是'; if ~meets_condition status = '否'; end fprintf('%.2f\t%d\t\t%s\n', m0, release_count, status); % 更新最优值(满足目标条件且释放次数比当前最优值小) if meets_condition && release_count < best_release best_M = m0; best_release = release_count; end end % 保存搜索结果 obj.search_results.m_values = m_values; obj.search_results.release_counts = release_counts; obj.search_results.optimal_M = best_M; obj.search_results.optimal_release = best_release; % 更新当前M值 obj.M = best_M; fprintf('--------------------------------\n'); fprintf('优化完成: 最优 M = %.3f, 释放次数 = %d\n', best_M, best_release); optimal_M = best_M; optimal_release = best_release; end function release_count = runSimulationForM(obj, x0, total_time) % 为给定M值运行仿真并计算释放次数 config = obj.optimization_config;%获取存储在对象属性 optimization_config中的优化配置 % 重置系统(当观测器存在时执行) if ~isempty(obj.observer) obj.observer = obj.observer.resetObserver(x0);%重置关联的观测器对象 end obj.reset();%重置事件触发器自身状态 % 初始化状态 x_true = x0; x_sigma_prev = x0; release_count = 0; % 时间步长 time_steps = 0:obj.h:total_time;%obj.h代表采样周期,即事件触发器的采样时间 %处理每个时间步长的事件,包括攻击检测、状态获取和误差计算 for k = 1:min(length(time_steps), config.max_k) t = time_steps(k);%获取当前仿真时间 % 生成随机欺骗攻击 gamma_val = 0;%设置默认值为0(无攻击) if rand() < obj.cyber_attack.deception_params.gamma_bar gamma_val = 1; end%以概率 gamma_bar触发欺骗攻击 % 获取当前观测器状态(直接访问观测器的状态估计属性) x_sigma_current = obj.observer.x_sigma; % 计算误差 e_error = x_sigma_prev - x_sigma_current;%上次触发时的状态估计与当前估计的差异 % 获取DoS攻击状态 [D_dos, ~] = obj.cyber_attack.generateDoSAttack(t); % 事件触发逻辑 if D_dos == 0 % 正常通信 % 计算隶属度 chi = obj.computeMembershipDegrees(x_sigma_current); % 计算加权矩阵 Omega_avg = zeros(size(obj.Omega{1})); for j = 1:length(obj.Omega) Omega_avg = Omega_avg + chi(j) * obj.Omega{j}; end % 检查触发条件 Omega_sqrt = sqrtm(Omega_avg);%计算加权矩阵的平方根 left_term = norm(Omega_sqrt * e_error, 2)^2; % 根据算法1更新psi psi_value = obj.computeAdaptivePsi(e_error); right_term = psi_value * norm(Omega_sqrt * x_sigma_prev, 2)^2; if left_term > right_term % 触发事件 release_count = release_count + 1; x_sigma_prev = x_sigma_current; obj.release_instants = [obj.release_instants; t]; end else % DoS攻击期间 psi_value = obj.psi_min;% 保持psi为最小值 end obj.current_psi = psi_value; % 模拟观测器状态变化(随机扰动) obj.observer.x_sigma = obj.observer.x_sigma + randn(size(obj.observer.x_sigma)) * 0.01;%向当前状态添加随机扰动(xσ(t k)=xσ(t k−1)+Δx) if ~isempty(obj.observer.fuzzy_system.C) obj.observer.y_sigma = obj.observer.fuzzy_system.C * obj.observer.x_sigma; end%更新输出估计(yσ=C*xσ) end % 记录最终释放次数 obj.trigger_count = release_count; end function plotOptimizationResults(obj) % 绘制优化结果 if isempty(obj.search_results) warning('没有优化结果数据'); return; end results = obj.search_results; figure; subplot(2, 1, 1); plot(results.m_values, results.release_counts, 'b-o', 'LineWidth', 1.5); hold on; plot(results.optimal_M, results.optimal_release, 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r'); xlabel('M值'); ylabel('释放次数 r_s'); title('M优化结果'); grid on; legend('释放次数', '最优值', 'Location', 'best'); subplot(2, 1, 2); target_line = ones(size(results.m_values)) * obj.optimization_config.target_release; plot(results.m_values, results.release_counts, 'b-o', results.m_values, target_line, 'r--', 'LineWidth', 1.5); xlabel('M值'); ylabel('释放次数 r_s'); title('与目标释放次数比较'); legend('实际释放次数', '目标释放次数', 'Location', 'best'); grid on; end function stats = getOptimizationStatistics(obj) % 获取优化统计信息 if isempty(obj.search_results) stats = struct(); return; end results = obj.search_results; stats = struct(... 'optimal_M', results.optimal_M, ... 'optimal_release', results.optimal_release, ... 'target_release', obj.optimization_config.target_release, ... 'search_range', [min(results.m_values), max(results.m_values)], ... 'min_release', min(results.release_counts), ... 'max_release', max(results.release_counts) ... ); end function plotTriggerHistory(obj) % 绘制触发历史 if isempty(obj.trigger_events) warning('没有触发事件记录'); return; end % 提取数据 times = [obj.trigger_events.time]; left_terms = [obj.trigger_events.left_term]; right_terms = [obj.trigger_events.right_term]; psi_values = [obj.trigger_events.psi_value]; is_trigger = [obj.trigger_events.is_trigger]; % 创建图形 figure('Name', '事件触发历史', 'Position', [100, 100, 1000, 800]); subplot(3, 1, 1); plot(times, left_terms, 'b-', times, right_terms, 'r--', 'LineWidth', 1.5); title('触发条件比较'); xlabel('时间 (s)'); ylabel('值'); legend('左项', '右项', 'Location', 'best'); grid on; subplot(3, 1, 2); plot(times, psi_values, 'g-', 'LineWidth', 1.5); title('自适应阈值变化'); xlabel('时间 (s)'); ylabel('ψ值'); grid on; subplot(3, 1, 3); stem(times, is_trigger, 'filled', 'MarkerSize', 4); title('触发事件'); xlabel('时间 (s)'); ylabel('触发 (1=是)'); ylim([-0.1, 1.1]); grid on; sgtitle('事件触发历史分析'); end end end如何根据混合网络攻击模型获得事件触发机制所需要的攻击事件表
10-25
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值