hdu 6170 Two strings dp

本文探讨了正则表达式的匹配算法,通过两段代码对比分析了不同匹配条件下的正确性和效率问题。特别关注了特殊情况下的匹配逻辑,揭示了算法实现中易忽视的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:http://acm.hdu.edu.cn/showproblem.php?pid=6170


#include<bits/stdc++.h>
int dp[2505][2505];
int n,m;
char ch1[3000],ch2[3000];
using namespace std;
int main()
{
    int T,i,j;
    cin>>T;
    while(T--)
    {
        scanf(" %s",ch1+1);
        scanf(" %s",ch2+1);
        int len1=strlen(ch1+1);
        int len2=strlen(ch2+1);
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        for(i=0;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                if(i>=1&&dp[i-1][j-1]&&(ch1[i]==ch2[j]||ch2[j]=='.'))//正常匹配
                dp[i][j]=1;
                else if(i>=1&&j>=2&&dp[i-1][j-2]&&ch2[j]=='*'&&(ch2[j-1]=='.'||ch2[j-1]==ch1[i]))//* 产生的的第一个
                dp[i][j]=1;
                else if(i>=1&&dp[i-1][j]&&ch2[j]=='*'&&ch1[i-1]==ch1[i])//* 产生的后几个
                dp[i][j]=1;
                else if(j>=2&&dp[i][j-2]&&ch2[j]=='*')//* 表示空
                dp[i][j]=1;

            }
        }
        if(dp[len1][len2])
        cout<<"yes"<<endl;
        else
        cout<<"no"<<endl;
    }
}

上面是ac的代码,下面是当时怎么改都wa 的代码,只有×产生后几个的判断条件有点区别,一直不明白为什么wa,直到发现的这个样例。。。。

asdfg

.*

结果应为no,一个很弱智的样例。。。。。。

#include<bits/stdc++.h>
int dp[2505][2505];
int n,m;
char ch1[3000],ch2[3000];
using namespace std;
int main()
{
    int T,i,j;
    cin>>T;
    while(T--)
    {
        scanf(" %s",ch1+1);
        scanf(" %s",ch2+1);
        int len1=strlen(ch1+1);
        int len2=strlen(ch2+1);
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        for(i=0;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                if(i>=1&&dp[i-1][j-1]&&(ch1[i]==ch2[j]||ch2[j]=='.'))
                dp[i][j]=1;
		else if(i>=1&&j>=2&&dp[i-1][j-2]&&ch2[j]=='*'&&(ch2[j-1]=='.'||ch2[j-1]==ch1[i]))
                dp[i][j]=1;
                else if(i>=1&&dp[i-1][j]&&ch2[j]=='*'&&(ch2[j-1]=='.'||ch2[j-1]==ch1[i]))
                dp[i][j]=1;     
                else if(j>=2&&dp[i][j-2]&&ch2[j]=='*')
                dp[i][j]=1;

            }
        }
    /*    for(i=1;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            cout<<dp[i][j]<<" ";
            cout<<endl;
        }*/
        if(dp[len1][len2])
        cout<<"yes"<<endl;
        else
        cout<<"no"<<endl;
    }
}




### HDU OJ 1063 Problem Solution in C Language The provided code snippet appears to be incomplete and does not directly correspond to the specific requirements of HDU OJ 1063. For solving problems on platforms like HDU OJ, it is crucial to understand both the problem statement thoroughly and apply appropriate algorithms or data structures. For HDU OJ 1063 titled "Fill Blank," which involves filling blanks based on given conditions, an efficient approach can involve dynamic programming techniques combined with careful input parsing and output formatting[^1]. Below is a more structured way to tackle this kind of problem using C: ```c #include <stdio.h> #include <string.h> #define MAXN 1005 // Assuming maximum length as per constraints char str[MAXN]; int dp[MAXN][MAXN]; void solve(int n) { memset(dp, 0, sizeof(dp)); for (int len = 2; len <= n; ++len) { // Length from smallest non-trivial case upwards for (int i = 0; i + len - 1 < n; ++i) { int j = i + len - 1; if (str[i] == '(' && str[j] == ')') { dp[i][j] = dp[i + 1][j - 1] + 2; } for (int k = i; k < j; ++k) { dp[i][j] = ((dp[i][j]) > (dp[i][k] + dp[k + 1][j])) ? (dp[i][j]) : (dp[i][k] + dp[k + 1][j]); } } } printf("%d\n", dp[0][n - 1]); // Output result according to sample outputs } int main() { while (~scanf("%s", str)) { int n = strlen(str); solve(n); // Process each test case individually } return 0; } ``` This program reads strings composed mainly of parentheses `(` and `)` characters, calculates how many pairs are correctly matched by applying dynamic programming principles, and prints out results accordingly. The core idea lies within maintaining a two-dimensional array where `dp[i][j]` represents the longest valid substring between positions `i` and `j`.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值