什么是随机变量的方差?方差反映随机变量取值的什么性质?
方差是一个常用来体现随机变量的取值分散程度的量
设
X
X
X是一个随机变量,若
E
{
[
X
−
E
(
X
)
]
2
}
E\{[X-E(X)]^2\}
E{[X−E(X)]2}存在,则称
E
{
[
X
−
E
(
X
)
]
2
}
E\{[X-E(X)]^2\}
E{[X−E(X)]2}为
X
X
X的方差,记为
D
(
X
)
D(X)
D(X)或
V
a
r
(
X
)
Var(X)
Var(X)
D
(
X
)
=
V
a
r
(
X
)
=
E
{
[
X
−
E
(
X
)
]
2
}
D(X) = Var(X) = E\{[X-E(X)]^2\}
D(X)=Var(X)=E{[X−E(X)]2}
称
D
(
X
)
\sqrt{D(X)}
D(X)为标准查或均方差,记为
σ
(
X
)
\sigma(X)
σ(X)
方差的性质
- 设 C C C是常数,则有 D ( C ) = 0 D(C)=0 D(C)=0
- 设 X X X是一个随机变量, C C C是常数,则有 D ( C X ) = C 2 D ( X ) D(CX) = C^2D(X) D(CX)=C2D(X)
- 设 X , Y X,Y X,Y相互独立, D ( X ) , D ( Y ) D(X),D(Y) D(X),D(Y)存在,则 D ( X ± Y ) = D ( X ) + D ( Y ) D(X\pm Y) = D(X) + D(Y) D(X±Y)=D(X)+D(Y)
- D ( X ) = 0 D(X)=0 D(X)=0的充要条件是 X X X以概率 1 1 1取常数 C C C,即 P { X = C } = 1 P\{X=C\} = 1 P{X=C}=1
请计算出三种离散型、三种连续型常见分布的方差
-
两点分布
-
分布率: P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k} , k=0,1 P(X=k)=pk(1−p)1−k,k=0,1
-
期望: E ( X ) = p E(X) = p E(X)=p
-
方差: D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = p ( 1 − p ) D(X)=E(X^2)-[E(X)]^2 = p(1-p) D(X)=E(X2)−[E(X)]2=p(1−p)
-
-
二项分布
-
分布率: P ( X = k ) = ( n k ) p k q n − k P(X=k)={n\choose k}p^k q^{n-k} P(X=k)=(kn)pkqn−k
-
期望: E ( X ) = ∑ k = 0 n k ( n k ) p k ( 1 − p ) n − k = n p E(X) = \sum^n_{k=0}k{n\choose k}p^k(1-p)^{n-k} = np E(X)=∑k=0nk(kn)pk(1−p)n−k=np
-
E ( X 2 ) = ∑ k = 0 n k 2 ( n k ) p k ( 1 − p ) n − k = n ( n − 1 ) p 2 + n p E(X^2) = \sum^n_{k=0}k^2{n\choose k}p^k(1-p)^{n-k} = n(n-1)p^2 + np E(X2)=∑k=0nk2(kn)pk(1−p)n−k=n(n−1)p2+np
-
方差: D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = n p q D(X) = E(X^2)-[E(X)]^2 = npq D(X)=E(X2)−[E(X)]2=npq
-
-
泊松分布
-
分布率: P ( X = k ) = λ k e − λ k ! P(X=k)=\frac{\lambda^k e^{-\lambda }}{k!} P(X=k)=k!λke−λ
-
期望: E ( X ) = ∑ k = 0 ∞ k λ k e − λ k ! = λ E(X) = \sum_{k=0}^{\infty}k\frac{\lambda^k e^{-\lambda }}{k!} = \lambda E(X)=∑k=0∞kk!λke−λ=λ
-
E ( X 2 ) = ∑ k = 0 ∞ k 2 λ k e − λ k ! = λ 2 + λ E(X^2) = \sum_{k=0}^{\infty}k^2 \frac{\lambda^k e^{-\lambda }}{k!} = \lambda^2 + \lambda E(X2)=∑k=0∞k2k!λke−λ=λ2+λ
-
方差: D ( X ) = λ D(X)=\lambda D(X)=λ
-
-
几何分布
-
分布率: P ( x = k ) = ( 1 − p ) k − 1 , p , j = 1 , 2 , … P(x=k)=(1-p)^{k-1},p,j=1,2,\dots P(x=k)=(1−p)k−1,p,j=1,2,…
-
期望: E ( X ) = ∑ k = 1 ∞ k p ( 1 − p ) k − 1 = 2 q + p p 2 E(X) = \sum_{k=1}^{\infty}kp(1-p)^{k-1}=\frac{2q+p}{p^2} E(X)=∑k=1∞kp(1−p)k−1=p22q+p
-
方差: D ( X ) = q p 2 D(X) = \frac{q}{p^2} D(X)=p2q
-
-
均匀分布
-
分布率: f ( x ) = 1 b − a f(x) = \frac{1}{b-a} f(x)=b−a1
-
期望: E ( X ) = a + b 2 E(X) = \frac{a+b}{2} E(X)=2a+b
-
方差 D ( X ) = ( b − a ) 2 12 D(X) = \frac{(b-a)^2}{12} D(X)=12(b−a)2
-
-
正态分布
-
分布率: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{- \frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ1e−2σ2(x−μ)2 , ( − ∞ < x < ∞ , σ > 0 ) (-\infty < x < \infty , \sigma > 0) (−∞<x<∞,σ>0)
-
期望: E ( X ) = μ E(X) = \mu E(X)=μ
-
方差: D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2
-
-
指数分布
-
分布率: f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x) = \left\{\begin{aligned}&\lambda e^{-\lambda x} ,x > 0\\&0 \qquad ,x \le 0\end{aligned}\right. f(x)={λe−λx,x>00,x≤0
-
期望: E ( X ) = 1 λ E(X) = \frac{1}{\lambda} E(X)=λ1
-
方差: 1 λ 2 \frac{1}{\lambda^2} λ21
-